首页|目标检测算法在滑坡识别中的应用

目标检测算法在滑坡识别中的应用

Application of the object detection algorithm in landslide identification

扫码查看
基于目视解译的滑坡数据集选取两大类(6个)目标检测算法构建滑坡自动识别模型,以四川省阿坝州作为研究区进行滑坡自动识别.基于高分辨率卫星影像构建包含3 120个样本的滑坡样本数据集;选取4种一阶段检测算法YOLOv5(s、m、l、x)与两种二阶段检测算法Faster R-CNN(VGG16和ResNet-50)分别构建滑坡自动识别模型;为探究样本数量对模型识别精度的影响,将样本数据集总数分为1 000、2 000和3 000,通过滑坡测试样本对识别结果进行评价.结果表明,基于目标检测的两类滑坡识别模型中,一阶段YOLOv5模型比二阶段Faster R-CNN模型更适用于滑坡识别;样本数对滑坡识别模型的性能具有一定影响.在较少样本的情况下,选择YOLOv5s模型能够获得较高的识别精度,随着样本数的增加,使用YOLOv5m模型可以获得更好的滑坡识别效果.
Two major categoriesof target detection algorithms(six in number)were selected based on the landslide database of visual interpretation to construct a corresponding automatic landslide identification model,and Aba Prefecture,Sichuan Province was taken as the study area to conduct a research on auto-matic landslide identification.A landslide dataset used high-resolution satellite imagery containing 3 120 samples.Four one-stage detection algorithms,i.e.YOLOv5(s,m,l,and x),as well as two two-stage detection algorithms,Faster R-CNN(VGG16 and ResNet-50)were employed to build corresponding landslide recognition models.In order to investigate the influence of the sample number on the model recognition accuracy,the total number of sample datasets was divided into 1 000,2 000,and 3 000.The recognition results were evaluated by landslide test samples,which showed that,of the two categories of object detection models for landslide recognition,the one-stage YOLOv5 models were more suitable than the two-stage Faster R-CNN models.The number of samples influenced the performance of the landslide recognition model.In the case of fewer samples,the YOLOv5s model was selected to obtain a higher recognition accuracy,while with the increase in the number of samples the YOLOv5m model could be used to obtain better landslide recognition results.

landslidedeep learningYOLOv5Faster R-CNN

唐烽顺、郝利娜、宋雨洋、武德宏

展开 >

成都理工大学地球科学学院,成都 610059

滑坡 深度学习 YOLOv5 Faster R-CNN

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(2)