首页|RMAPS模式预报总辐射的3种订正方法应用

RMAPS模式预报总辐射的3种订正方法应用

Application of three correction methods to global radiation of the RMAPS model

扫码查看
为降低光伏功率预测中预报总辐射误差且探讨各类订正方法的适用性,分季节对比分析逐步回归、支持向量机(SVM)和相似误差订正(AnBC)方法对快速更新多尺度分析和预报系统短期预报总辐射的订正效果.结果表明,订正后明显降低了预报误差,一定程度上改善了预报总辐射分布较分散和偏大的情况.酒泉鸿坤光伏电站秋季逐步回归订正效果相对最佳(平均绝对偏差(MAE)降低4.56 W/m2),冬季、夏季和春季均是AnBC效果相对最佳(MAE依次降低10.33、12.71、44.27 W/m2);敦煌电建汇能光伏电站秋季和冬季均是SVM订正效果相对最佳(MAE分别降低4.73和7.85 W/m2),夏季和春季均是AnBC效果相对最佳(MAE分别降低16.24和34.17 W/m2).两座电站逐小时误差分布显示,AnBC效果相对最佳;就各季节相对最佳订正方法而言,订正后春季提高时次百分比最高(酒泉鸿坤为73.88%,电建汇能为77.28%).晴天SVM订正效果最明显,非晴天AnBC效果最明显.
In order to reduce the error of global radiation forecast and discuss the applicability of various correction methods,the correction effect of stepwise regression,support vector machine(SVM)and ana-log bias correction(AnBC)method were compared in four seasons,demonstrating that the correction re-sults obviously reduced the forecast error,and the situations that global radiation forecast was larger and its distribution more dispersed were improved to some extent.The correction effect of stepwise regres-sion model was best in autumn at Jiuquan Hongkun photovoltaic power station with a reduction of the mean absolute deviation(MAE)of 4.56 W/m2.While the effect of AnBC method was the best in winter,summer and spring,with a reduction of MAE of 10.33,12.71 and 44.27 W/m2.For Dunhuang Huineng photovoltaic power station,the correction effect of SVM was the best in autumn and winter with a reduc-tion of MAE of 4.73 and 7.85 W/m2.In spring and summer,the effect of AnBC method was the best,MAE decreased by 16.24 and 34.17 W/m2.Hourly error distribution of the two power stations showed that the AnBC method was superior.In terms of the best correction method in each season,spring had the highest percentage of times improvement,with 73.88%at Jiuquan Hongkun and 77.28%at Dunhuang Huineng.SVM correction method was most effective on sunny days,while the AnBC method on non-sunny days.

rapid updating of multi-scale analysis and prediction systemglobal radiationstepwise re-gressionsupport vector machineanalog bias correction

赵文婧、王小勇、李艳、刘抗、景慧、叶培龙、闫昕旸、何金梅

展开 >

兰州大学 大气科学学院,兰州 730000

甘肃省气象服务中心,兰州 730020

兰州中心气象台,兰州 730020

快速更新多尺度分析和预报系统 总辐射 逐步回归 支持向量机 相似误差订正

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(3)