首页|幂计数算子的表示

幂计数算子的表示

Representation of power number operators

扫码查看
讨论平方可积Bernoulli泛函空间L2(M)上幂计数算子aN的表示问题,a是任意非负实数.得到4种表示方法:aN的谱表示,aN以{an;n≥0}为其特征值,aN的特征向量全体构成L2(M)的一组标准正交基,当a=2时,2N可用(Γ)-QNBs的异型等时混合积算子级数表示;关于L2(M)的标准正交基的表示;利用真空态Zφ以及(Γ)-QNBs,给出aN的(Γ)-QNBs-真空态表示;利用一列特殊的(Γ)-QNBs,给出aN的极限表示.考虑aN与(Γ)-QNBs等时混合积复合后特征根与特征子空间均会随复合顺序发生变化.
The representation of the power number operator aN was proposed,where a is a non-negative real number,aN is densely defined in L2(M),which the space of the square-integrable Bernoulli functional noise.The following conclusions are obtained:the first one was the spectral representation,where {an;n≥0} is the spectrum of aN,and the eigenvectors of aN constituted a standard orthogonal basis of L2(M);aN could be represented by the QNBs of L2(M);the vacuum state representation of aN was given using the vacuum state Zφas well as(Γ)-QNBs;obtained with the help of the(Γ)-QNBs{∂σn;n≥0}.The constructure of the composition of aN and {∂σ,∂*σ;σ∈(Γ)} was considered.

a power number operatoroperator representation(Γ)quantum Bernoulli noise

周玉兰、杨青青、王舟宁、柳翠翠、魏万瑛

展开 >

西北师范大学数学与统计学院,兰州 730070

a级幂计数算子 算子表示 (Γ)量子Bernoulli噪声

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(4)