首页|轻量级Transformer的双向交互近红外手指静脉图像识别

轻量级Transformer的双向交互近红外手指静脉图像识别

扫码查看
针对现有手指静脉识别算法速度慢、复杂度高以及Transformer架构在小数据集上效果不佳的问题,提出轻量级Transformer的双向交互识别方法。利用轻量级卷积神经网络与改进的Trans-former架构组成并行主干网络,用于近红外手指静脉图像的局部和全局特征提取;设计交互结构,在并行结构的基础上,以交互方式融合两条分支上不同尺度的特征。为最大程度地保留近红外图像的局部特征和全局表示,将两条分支提取的信息拼接融合,通过输出层得出识别结果。结果表明,该算法在多个数据集上的最高识别率可达99。77%,参数量仅1。33 MB。相较于其他指静脉算法,以及改进的Transformer架构,在保持高准确率的同时进一步降低了算法的复杂度。
Bidirectional interactive near infrared finger vein image recognition of a lightweight transformer
To address the issues of slow recognition speed,high algorithm complexity and poor perfor-mance of transformer architecture on small datasets in existing finger vein recognition algorithms,a light-weight transformer based bidirectional interactive near-infrared finger vein recognition algorithm was proposed,with a parallel backbone network composed of a lightweight convolutional neural network and an improved transformer architecture for local and global feature extraction of near-infrared finger vein images.A up and down structure was designed that integrated features of different scales on two branches in an interactive manner on the basis of a parallel structure.In order to preserve the local fea-tures and global representation of the near-infrared image to the greatest extent possible,the information extracted from the two branches was concatenated and fused,and the recognition results obtained through the output layer.The experimental results showed that the algorithm had a maximum recognition rate of 99.77%on multiple datasets,with a parameter size of only 1.33 MB.Compared to other novel fin-ger vein algorithms and improved transformer architectures,it further reduced the complexity of the algo-rithm while maintaining a high accuracy.

convolution neural networkfinger vein recognitionnear infrared imagelightweight net-workfeature extraction

陶志勇、高亚静、王萌、林森

展开 >

辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105

郑州科技学院 电子与电气工程学院,郑州 450064

沈阳理工大学 自动化与电气工程学院,沈阳 110159

卷积神经网络 指静脉识别 近红外图像 轻量级网络 特征提取

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(5)