兰州大学学报(自然科学版)2024,Vol.60Issue(5) :621-628.DOI:10.13885/j.issn.0455-2059.2024.05.008

轻量级Transformer的双向交互近红外手指静脉图像识别

Bidirectional interactive near infrared finger vein image recognition of a lightweight transformer

陶志勇 高亚静 王萌 林森
兰州大学学报(自然科学版)2024,Vol.60Issue(5) :621-628.DOI:10.13885/j.issn.0455-2059.2024.05.008

轻量级Transformer的双向交互近红外手指静脉图像识别

Bidirectional interactive near infrared finger vein image recognition of a lightweight transformer

陶志勇 1高亚静 2王萌 1林森3
扫码查看

作者信息

  • 1. 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
  • 2. 郑州科技学院 电子与电气工程学院,郑州 450064
  • 3. 沈阳理工大学 自动化与电气工程学院,沈阳 110159
  • 折叠

摘要

针对现有手指静脉识别算法速度慢、复杂度高以及Transformer架构在小数据集上效果不佳的问题,提出轻量级Transformer的双向交互识别方法.利用轻量级卷积神经网络与改进的Trans-former架构组成并行主干网络,用于近红外手指静脉图像的局部和全局特征提取;设计交互结构,在并行结构的基础上,以交互方式融合两条分支上不同尺度的特征.为最大程度地保留近红外图像的局部特征和全局表示,将两条分支提取的信息拼接融合,通过输出层得出识别结果.结果表明,该算法在多个数据集上的最高识别率可达99.77%,参数量仅1.33 MB.相较于其他指静脉算法,以及改进的Transformer架构,在保持高准确率的同时进一步降低了算法的复杂度.

Abstract

To address the issues of slow recognition speed,high algorithm complexity and poor perfor-mance of transformer architecture on small datasets in existing finger vein recognition algorithms,a light-weight transformer based bidirectional interactive near-infrared finger vein recognition algorithm was proposed,with a parallel backbone network composed of a lightweight convolutional neural network and an improved transformer architecture for local and global feature extraction of near-infrared finger vein images.A up and down structure was designed that integrated features of different scales on two branches in an interactive manner on the basis of a parallel structure.In order to preserve the local fea-tures and global representation of the near-infrared image to the greatest extent possible,the information extracted from the two branches was concatenated and fused,and the recognition results obtained through the output layer.The experimental results showed that the algorithm had a maximum recognition rate of 99.77%on multiple datasets,with a parameter size of only 1.33 MB.Compared to other novel fin-ger vein algorithms and improved transformer architectures,it further reduced the complexity of the algo-rithm while maintaining a high accuracy.

关键词

卷积神经网络/指静脉识别/近红外图像/轻量级网络/特征提取

Key words

convolution neural network/finger vein recognition/near infrared image/lightweight net-work/feature extraction

引用本文复制引用

出版年

2024
兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
段落导航相关论文