首页|基于极限学习机的短期电力负荷在线预测

基于极限学习机的短期电力负荷在线预测

扫码查看
为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM,SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输出权值的稀疏正则化项相结合,用l1-范数稀疏化网络隐藏层节点,用次梯度策略解决求解过程中代价函数无法处处可微的问题,以递归最小二乘的训练方法完成在线学习,根据估计误差自适应寻找最优正则化参数.仿真结果表明,基于SRLS-ELM的算法能有效简化网络结构,且与ELM、堆叠核ELM批量、在线序列ELM半在线以及精确在线支持向量机回归模型相比,对短期电力负荷在线预测时具有更高的预测精度和学习效率,且鲁棒性强.
Short-term electricity load online forecasting based on extreme learning machine
In order to meet the demand for real-time power load forecasting in smart grids,a sparse recur-sive least squares-based extreme learning machine(SRLS-ELM)online learning algorithm was proposed and used for short-term power load online forecasting.Compared with the online sequential ELM,the SRLS-ELM algorithm did not need to select off-line samples to initialize the network output weights,combined the squared error of the network learning with the sparse regularization term of the output weights,used the l1-norm as a sparse method to simplify the hidden layer structure of the network,em-ployed the sub-gradient strategy to solve the problem that the cost function in the solving process cannot be minimized everywhere,completed the online learning by the recursive least squares training method,and could be adaptively adjusted to find the optimal regularization parameters according to the estimation error.Simulation experiments showed that the proposed algorithm could effectively simplify the network structure,and the short-term power load online prediction model based on SRLS-ELM had higher predic-tion accuracy and learning efficiency with high robustness compared with ELM,kernel based ELM batch learning,online sequential ELM semi-online learning and accurate online support vector regression models.

short-term power load forecastingextreme learning machineonline learningregularization

杨凌、彭文英、杨思怡、杜娟、程丽

展开 >

兰州大学 信息科学与工程学院,兰州 730000

京东集团 搜索与推荐平台部,北京 101100

短期电力负荷预测 极限学习机 在线学习 正则化

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(5)