首页|基于DMSP/OLS-NPP/VIIRS夜间灯光数据的滇中城市群人均能源消费碳排放

基于DMSP/OLS-NPP/VIIRS夜间灯光数据的滇中城市群人均能源消费碳排放

扫码查看
基于DMSP/OLS-NPP/VIIRS夜间灯光数据集反演滇中城市群能源消费碳排放;利用Global Moran's I、LISA指标、时空跃迁矩阵,量化2006-2021年滇中城市群人均能源消费碳排放的时空动态;通过时空地理加权自回归模型分析人均碳排放驱动因素。结果表明,滇中城市群人均能源消费碳排放量之间存在正的空间相关性,且相关性持续波动上升;高-高集群主要分布在滇中城市群的核心区域,低-低集群主要位于西北方;县域人均碳排放的集聚类型相对稳定,有路径依赖效应,4种类型跃迁占主导地位,但趋势在逐渐减弱,空间凝聚度在2006-2009年达到91。84%,2017-2021年为69。39%;碳排放强度、总人口、城市化率、第二产业份额、第三产业份额、人均GDP是人均碳排放的主要驱动因素,人均GDP的作用在减弱,碳排放强度的作用在逐渐增强。
An analysis of carbon emissions from per capita energy consumption in central Yunnan urban agglomeration based on DMSP/OLS-NPP/VIIRS nighttime lighting data
Based on DMSP/OLS-NPP/VIIRS nighttime lighting dataset inversion of carbon emissions from energy consumption in the central Yunnan urban agglomeration(CYU),the spatial and temporal dynamics of carbon emissions were quantified from per-capita energy consumption in CYU from 2006 to 2021 by using Global Moran's I,local indicators of spatial association indicators;spatial and temporal jump matricesand in per capita driving factors of carbon emission were analyzed via the geographically and temporally weighted regression model.The results showed that there was a positive spatial correla-tion between per-capita carbon emissions from energy consumption in CYU,and this correlation contin-ued to fluctuate and increase;the high-high clusters were mainly distributed in the core area of CYU,while the low-low clusters mainly located in the northwestern part of the province.The clustering type of per capita carbon emissions in the counties was relatively stable,with a path-dependence effect,and the type-4 leap dominated the area,but this tendency was weakening,and the spatial cohesion of per capita carbon emissions was relatively stable from 2006 to 2009.The cohesion reached 91.84%from 2006 to 2009,but only 67.35%from 2017 to 2021;carbon emission intensity,total population,urbanization rate,share of secondary industry,share of tertiary industry,and GDP per capita were the main drivers of per capita carbon emissions,and the role of GDP per capita was weakening,and the role of carbon emission intensity gradually increasing.

central Yunnan urban agglomerationcarbon emissionnighttime lighting dataspatial differ-entiationgeographically and temporally weighted regression model

尤宁、韩立波、李世强、朱大明、宋炜炜、侯海燕

展开 >

昆明理工大学国土资源工程学院,昆明 650093

陆军炮兵防空兵学院郑州校区,郑州 450052

山西省自然资源厅,太原 030000

滇中城市群 碳排放 夜间灯光数据 空间分异 时空地理加权自回归模型

2024

兰州大学学报(自然科学版)
兰州大学

兰州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.855
ISSN:0455-2059
年,卷(期):2024.60(6)