首页|高次凸非球面补偿检验方法研究

高次凸非球面补偿检验方法研究

扫码查看
高次凸非球面镜是光学系统中至关重要的元件,通常作为次镜来补偿光学系统的轴外像差,但其检验方法一直是一大难点.基于背向零位检测方法,提出利用三透镜与单折射面组合的形式来补偿高次非球面的法线像差.首先选取高次非球面的二次比较面来简化计算,基于三级像差理论求解系统的初始结构,对高次非球面的法线像差进行补偿,使用ZEMAX软件仿真与优化后,设计结果完全满足要求.随后结合一块有效通光口径为170 mm、顶点曲率半径为266.8 mm的高次凸非球面反射镜,测得镜面的面形精度均方根为0.019 λ(λ = 632.8 nm),满足实际检测要求,验证了所提设计方法的可行性.此方法为大口径高次凸非球面的检验提供了一个新的思路.
Research on compensation detection method for high-order convex aspheric surface
The high-order convex aspherical mirror is a crucial element in the optical system,and usually used as a secondary mirror to compensate for the off-axis aberration of optical systems,however,its inspection method has always been a major challenge.The back-to-zero detection method is adopted,and a combination of three lenses and a single refractive surface is proposed to compensate for the normal aberration of the high-order aspheric surface.Firstly,the quadratic comparison surface of the high-order aspheric surface is selected to simplify the calculation.Based on the third-order aberration theory,the initial structure of the system is solved,and the normal aberration of the high-order aspheric surface is compensated.After simulation and optimization using ZEMAX software,it is shown that the design results fully meet the requirements.And then,combined with a high-order convex aspheric reflector with an effective clear aperture of 170 mm and a vertex curvature radius of 266.8 mm,the root mean square of the mirror's surface shape accuracy is measured to be 0.019 λ(λ= 632.8 nm),which meets the actual detection requirements and verifies the feasibility of the proposed design method.This method provides a new idea for the inspection of large-diameter high-order convex aspheric surfaces.

geometric opticshigh-order convex aspheric surfacezero compensationthird order aberration

陈光宇、胡明勇、杨传龙、封志伟、徐剑锋、白茜、崔金龙

展开 >

合肥工业大学仪器科学与光电工程学院,安徽 合肥 230009

合肥工业大学光电技术研究院,安徽 合肥 230009

几何光学 高次凸非球面 零位补偿 三级像差

2024

量子电子学报
中国光学学会基础光学专业委员会 中国科学院合肥物质科学研究院

量子电子学报

CSTPCD北大核心
影响因子:0.67
ISSN:1007-5461
年,卷(期):2024.41(1)
  • 1
  • 10