首页|10 MHz氢钟信号传递系统

10 MHz氢钟信号传递系统

扫码查看
为满足同一科研园区内不同建筑之间10 MHz氢钟信号(HCS)长期稳定度共享的需求,提出了一种低成本、集成化的基于光纤链路的10 MHz HCS传递完整解决方案.该方案采用1 GHz的射频信号对激光光强进行调制,利用光纤实现信号传递.通过将远端反射信号与本地信号和频后直接与待传递的HCS分频鉴相,输出误差信号反馈控制1 GHz信号的频率,实现远端1 GHz信号与本地HCS之间的相位锁定,从而使远端1 GHz信号具有与本地HCS相同的频率稳定度;之后再通过分频器在远端生成10 MHz信号,作为射频参考输出.实验验证了该方案的频率传递保真度,该系统在200 m往返光纤上的附加频率稳定度(艾伦偏差)为1 s平均时间2.4×10-13 和10000 s平均时间5.7×10-17;在20 km传递距离上,附加频率稳定度(艾伦偏差)为1 s平均时间4.8×10-13 和10000 s平均时间2.1×10-16.研究结果表明该系统的长时间频率传递稳定度优于HCS的频率稳定度,可以满足千米范围内氢钟信号共享的需求.
A 10 MHz hydrogen clock signal transferring system
In order to meet the long-term frequency stability sharing requirement of 10 MHz hydrogen clock signal(HCS)between different buildings in the same scientific research park,a low-cost and highly integrated solution for optical-fiber-based 10 MHz HCS transferring setup is proposed.In the scheme,a 1 GHz radio-frequency signal(1GRFS)is used to modulate the laser intensity and optical fibers are used for signal transmission.In principle,the sum of the source 1GRFS and signal reflected from remote is frequency-divided firstly and then phase-compared with the HCS to be transferred.Then the error signal from the phase comparator is fed back to modulate the frequency of the 1 GHz oscillator to lock the phase between the remote 1GRFS and the HCS.Therefore,the remote 1GRFS has the same frequency stability as the HCS.Afterwards,a 10 MHz signal is generated at the remote site through a frequency divider as RF reference output.Furthermore,experiments are carried out to verify the precision of the system.It is shown that the additional frequency stability of the HCS transferring system is 2.4×10-13 at 1 s average time and 5.7×10-17 at 10000 s average time with a fiber link of 200 m,4.8×10-13 at 1 s average time and 2.1×10-16 at 10000 s average time with a fiber link of 20 km.The verification results prove that the long-term stability of the transferring system is better than the frequency stability of the HCS,indicating that the system can be used for sharing HCS within kilometer range.

optical communicationhydrogen clock signal transferringoptical fiberphase-locked loopnoise compensation

蔡桢荻、孙焕尧、陈群峰

展开 >

中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071

中国科学院大学,北京 100049

光通信 氢钟信号传递 光纤 锁相环 噪声补偿

国家重点研发计划国家重点研发计划中国科学院战略性先导科技专项(B类)中国科学院战略性先导科技专项(B类)国家自然科学基金重大研究计划国家自然科学基金重大研究计划

2017YFA03044032020YFA0309801XDB21010300XDB2103010091636110U1738141

2024

量子电子学报
中国光学学会基础光学专业委员会 中国科学院合肥物质科学研究院

量子电子学报

CSTPCD北大核心
影响因子:0.67
ISSN:1007-5461
年,卷(期):2024.41(1)
  • 4