首页|基于YOLO-v8的复杂施工场景危险源识别方法应用

基于YOLO-v8的复杂施工场景危险源识别方法应用

扫码查看
基于机器视觉的复杂施工场景不安全行为与施工进度检测尚处于研究阶段,以YOLO-v8模型为基础提出一种复杂施工场景不安全行为与施工进度无监督学习检测模型.通过MaskCut模块对数据集开展自监督学习标注,降低数据集标注工作量;应用DRM与CRM模块逐层分割遮挡特征并进行背景重构;以MaskCut模块自监督标注数据集训练YOLO-v8 基础模型对典型施工8 种场景中常见15 种不安全行为以及施工进度开展检测.试验结果表明:本文所提方法对复杂施工场景多种不安全行为表现较高检测性能,平均准确率达到 84.63%;所提方法针对多种常见施工不安全行为并且融合遮挡对象解耦与重建具有较高应用潜力,并且对基于机器视觉的施工进度检测研究具有较高借鉴价值.
Application of Hazard Identification Method in Complex Construction Scene Based on YOLO-v8
The study on unsafe behavior and construction progress detection in complex construction scenes based on machine vision is still in the initial stage.This paper proposes an unsupervised learning detection model for unsafe behavior and construction progress in complex construction scenes based on the YOLO-v8 model.Self-su-pervised learning annotation of datasets is carried out through MaskCut module to reduce the workload of data set annotation.DRM and CRM modules are applied to segment occlusion features layer by layer and reconstruct background.In addition,the YOLO-v8 basic model is trained with the self-supervised annotation data set of MaskCut module to detect and study 15 common unsafe behaviors and construction progress in 8 typical construc-tion scenarios.The experimental results show that the proposed method has high detection performance for a vari-ety of unsafe behaviors in complex construction scenes,and the average accuracy rate reaches 84.63%.The pro-posed method has high application potential for a variety of common construction unsafe behaviors and fusion of occlusion object decoupling and reconstruction.And it has high reference value for the research of construction progress detection based on machine vision.

complex construction scenesource of dangerconstruction progressYOLO-v8

刘颖

展开 >

甘肃时迈建筑工程有限公司,甘肃 兰州 730000

复杂施工场景 危险源 施工进度 YOLO-v8

2024

兰州工业学院学报
兰州工业学院

兰州工业学院学报

影响因子:0.205
ISSN:1009-2269
年,卷(期):2024.31(3)
  • 6