首页|基于改进YOLOv8的水稻病害检测方法

基于改进YOLOv8的水稻病害检测方法

扫码查看
针对现有的水稻病害检测方法存在检测精度不足、复杂度过高的问题,提出一种改进YOLOv8 的水稻病害检测方法.首先,在主干网络中引入轻量级网络GhostNet,构建C2fGhost模块替换原有的C2f模块,减少算法的参数量、浮点运算量和模型大小,降低了算法的复杂程度;其次,在颈部网络中添加EMA注意力机制,增强关键信息提取能力;最后,引入NWD损失函数与CIoU损失函数相结合,以提升算法的检测精度.实验结果表明改进后的算法 GEN-YOLO 与YOLOv8n相比整体平均精度mAP@0.5 增加了 1.4 个百分点,参数量减少了 0.452 M,浮点运算量减少了1.2 G,模型大小减少了0.826 MB,改进算法在保证了轻量化的同时有效地提高了检测精度,且本方法在检测精度和算法复杂度方面均优于其他主流目标检测方法,表明了本方法具有先进性.
Rice Disease Detection Method Based on Improved YOLOv8
Aiming at the problems of insufficient detection accuracy and high complexity of existing rice disease detection methods,an improved YOLOv8 method for rice disease detection is proposed.Firstly,the lightweight network GhostNet is introduced into the backbone network,and the C2fGhost module is constructed to replace the original C2f module,which reduces the number of parameters,floating point calculations and model size of the al-gorithm,and reduces the complexity of the algorithm.Secondly,the EMA attention mechanism is added to the neck network to enhance the ability of key information extraction.Finally,the NWD loss function is introduced to combine with the CIoU loss function to improve the detection accuracy of the algorithm.The experimental results show that compared with YOLOv8n,the overall average accuracy(mAP@0.5)of the improved algorithm GEN-YOLO is increased by 1.4 percentage points,the number of parameters is reduced by 0.452M,the amount of float-ing point calculation is reduced by 1.2G,and the model size is reduced by 0.826MB.The improved algorithm ef-fectively improves the detection accuracy while ensuring lightweight.Moreover,the proposed method is superior to other mainstream object detection methods in terms of detection accuracy and algorithm complexity,which indi-cates that the proposed method is advanced.

rice disease detectionYOLOv8GhostNetEMA attention moduleNWD loss function

陆维安、刘永春、何志渊

展开 >

四川轻化工大学 自动化与信息工程学院,四川 宜宾 644002

人工智能四川省重点实验室,四川 宜宾 644002

四川省农业科学院 生物技术核技术研究所,四川 成都 610066

水稻病害检测 YOLOv8 GhostNet EMA注意力机制 NWD损失函数

2024

兰州工业学院学报
兰州工业学院

兰州工业学院学报

影响因子:0.205
ISSN:1009-2269
年,卷(期):2024.31(6)