首页|基于改进YOLOv7的小目标遥感图像识别算法

基于改进YOLOv7的小目标遥感图像识别算法

扫码查看
针对遥感图像中小目标被漏检、错检的情况,提出基于改进YOLOv7 的小目标遥感图像识别算法.通过构建坐标卷积堆叠分支 CCSB(Coordinate Convolutional Stacking Branch)替换原ELAN,提升网络对密集目标的检测能力;基于浅层特征提出联合特征提取模块JFEM(Joint fea-ture extraction module),提取多尺度信息;提出深层路由注意力模块DRAM(Deep routing attention module),使模型聚焦于图像中的关键信息;基于信息融合提出特征融合策略FFS(Feature fusion strategy),去除特征金字塔内部冲突信息;提出混合损失函数MLF(Mixed loss function),提升对目标的定位能力.结果表明:在DIOR遥感数据集上mAP 达到 92.32%,较原始YOLOv7 提高了3.63%;在RSOD数据集上mAP达到97.80%,较原始YOLOv7 提高了3.50%,证明了所改进方法在遥感图像上的有效性.
Small Target Remote Sensing-Imagery Recognition Algorithm Based on Improved Yolov7
In view of the situation where small targets in remote sensing images are missed or wrongly detected,a small target remote sensing image recognition algorithm based on improved YOLOv7 is proposed.Construct a coordinate convolution stacking branch CCSB(Coordinate Convolutional Stacking Branch)to replace the original ELAN to improve the network's detection ability of dense targets;propose a joint feature extraction module JFEM(Joint feature extraction module)based on shallow features to extract multi-scale information;propose the DRAM(Deep routing attention module)to make the model focus on the key information in the image;a feature fusion strategy FFS(Feature fusion strategy)is proposed based on information fusion to remove conflict informa-tion within the feature pyramid;a mixed loss function MLF(Mixed loss function)is proposed to improve the po-sitioning ability of the target.The results show that the mAP reaches 92.32%on the DIOR remote sensing data set,which is 3.63%higher than the original YOLOv7.The mAP reaches 97.80%on the RSOD data set,which is 3.50%higher than the original YOLOv7,which proves the effectiveness of the improved method on remote sens-ing images.

remote sensing imageYOLOv7feature fusionsmall target detectionloss function

张瑶、王军号

展开 >

安徽理工大学 计算机科学与工程学院,安徽 淮南 232000

遥感图像 YOLOv7 特征融合 小目标检测 损失函数

2024

兰州工业学院学报
兰州工业学院

兰州工业学院学报

影响因子:0.205
ISSN:1009-2269
年,卷(期):2024.31(6)