首页|基于GA-BP神经网络岩石单轴抗压强度预测模型研究

基于GA-BP神经网络岩石单轴抗压强度预测模型研究

Research on Prediction Method of Rock Uniaxial Compressive Strength based on GA-BP Neural Network

扫码查看
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56 组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较.研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法.
To investigate the correlation between the uniaxial compressive strength and elastic modulus of overlying strata sandstone and mudstone with greater accuracy,historical data consisting of 56 sets of uniaxial compressive strength and elastic modulus of sandstone and mudstone from Hujiahe Coal Mine were analyzed.Genetic algorithms were utilized to optimize the structure and learning parameters of a BP neural network,resulting in the identification of the optimal network structure and parameter settings.The GA-BP neural net-work was then applied to predict the uniaxial compressive strength of coal mine sandstone and mudstone.Comparisons were made with traditional BP neural networks and nonlinear regression analysis methods.The research findings indicate that the GA-BP neural network prediction model achieves higher accuracy and generalization capability in predicting the relationship between the uniaxial compressive strength and elastic modulus of sandstone and mudstone.It effectively addresses the local optimum and overfitting issues associated with traditional BP neural networks and exhibits superior nonlinear relationship modeling capabilities compared to nonlinear regression analy-sis.Therefore,it is considered an effective method for predicting the uniaxial compressive strength of sandstone and mudstone.

rock mechanical parametersnonlinear regressionBP neural networkgenetic algorithmprediction model

张奥宇、杨科、池小楼、张杰

展开 >

安徽理工大学 煤炭安全精准开采国家地方联合工程研究中心,安徽 淮南 232001

安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001

岩石力学参数 非线性回归 BP神经网络 遗传算法 预测模型

2025

山西潞安矿业(集团)公司

影响因子:0.222
ISSN:1005-2798
年,卷(期):2025.34(1)