首页|一种基于YOLOv5和轮廓约束的木材空洞缺陷应力波层析成像算法

一种基于YOLOv5和轮廓约束的木材空洞缺陷应力波层析成像算法

扫码查看
本研究针对木材空洞缺陷提出一种基于YOLOv5和轮廓约束的应力波层析成像算法,能在减少传感器数量的情况下保证成像的质量.首先,利用仿真软件生成的虚拟缺陷图像作为样本进行训练,并通过YOLOv5模型准确检测缺陷的位置;然后,采用轮廓约束算法对检测结果分别进行全局约束和局部约束,重建缺陷的轮廓并得到最终的成像结果.试验结果表明,基于YOLOv5和轮廓约束的应力波层析成像算法的平均准确度为94.73%,当应力波传感器从12个减少到6个时,该方法重建的缺陷图像相比最短距离法缺陷边缘清晰,平均精度提升了38.76%.
A Stress Wave Tomography Algorithm for Detecting Holes in Wood using YOLOv5 and Constrained Contour
In this study,we proposed a stress wave tomography algorithm based on YOLOv5 and constrained contour for detecting holes in wood.This method ensures the quality of images with reduced number of sensors.Firstly,virtual defect images generated by simulation software were used as samples for training.Next the position of the defect was accurately detected through the YOLOv5 model.Then,the proposed constrained contour algorithm was used to perform global and local constraints on the detection results,to reconstruct the contour of the defect,and to obtain the final images.Experiment results showed that the average accuracy of this method was 94.73%.When the number of stress wave sensors was reduced from 12 to 6,the defect images reconstructed by this method had higher precision and clearer defect edges than traditional imaging methods,with an average precision improvement of 38.76%.

YOLOv5 modelconstrained contourwood void defectsstress wave tomographynumber of stress wave sensors

叶程浩、杜晓晨、鲍宇

展开 >

浙江农林大学数学与计算机科学学院,浙江杭州 311300

YOLOv5模型 轮廓约束 木材空洞缺陷 应力波层析成像 传感器数量

浙江省公益技术研究计划项目

LGG19F020019

2023

木材科学与技术
中国林科院木材工业研究所

木材科学与技术

CSTPCD北大核心
影响因子:0.677
ISSN:2096-9694
年,卷(期):2023.37(5)
  • 9