首页|基于深度学习钢筋端面目标识别方法研究

基于深度学习钢筋端面目标识别方法研究

扫码查看
传统视觉图像分析法对于钢筋端面的识别精度依赖于光照强度和图片像素,但是工地环境复杂、光照不均会大大降低钢筋轮廓的识别精度.文章采用深度学习的方法,建立可靠的图片训练模型,令检测系统具有对钢筋轮廓图像自主学习的能力,不断优化训练参数,达到提高钢筋端面轮廓识别精度的效果.
Research on target recognition method of steel bar end face based on deep learning
The recognition accuracy of the traditional visual image analysis method for the end face of the steel bar depends on the intensity of illumination and the level of image pixels.However,the changeable and uneven illumination of the site environment will greatly reduce the recognition accuracy of the steel bar contour.The method of deep learning is adopted to establish a reliable im-age training model,so that the detection system has the ability to learn the steel bar contour image independently,and constantly opti-mize the training parameters,so as to achieve the effect of improving the recognition accuracy of the steel bar end face contour.

deep learningneural networkactivation functiontraining modelindependent learningKmeans algorithm

郑晓辉

展开 >

福建船政交通职业学院,福建 福州 350007

深度学习 神经网络 激活函数 训练模型 自主学习 Kmeans算法

福建省中青年教师教育科研项目

JAT220557

2024

木工机床
福州木工机床研究所,中国机床工具工业协会,木工机床分会

木工机床

影响因子:0.105
ISSN:1005-1937
年,卷(期):2024.(3)