首页|基于GA-BP代理模型和稀疏多项式混沌展开的冲压稳健优化设计

基于GA-BP代理模型和稀疏多项式混沌展开的冲压稳健优化设计

扫码查看
为了开展冲压稳健优化设计,提出基于GA-BP代理模型和稀疏多项式混沌展开(sPCE)的优化设计方法.首先,根据生产现场实际情况,选取冲压工艺设计变量和成形质量指标,利用拉丁超立方采样(LHS)和CAE数值模拟获得冲压工艺样本点,在此基础上,综合遗传算法(GA)和反向传播神经网络(BP)构建GA-BP代理模型;然后,基于sPCE分析冲压成形质量对设计变量的不确定性响应,耦合上述GA-BP代理模型和sPCE不确定响应模型,建立冲压稳健优化模型;最后,运用非支配排序遗传算法(NSGA-Ⅱ),在全冲压设计空间内求解稳健优化模型,并以某汽车A柱下加强板为例开展冲压稳健优化设计,结果表明:该方法可准确获得可行的最优稳健性工艺参数组合,能较好地应用于冲压稳定优化设计.
Robust optimization design for stamping based on GA-BP proxy model and sparse polynomial chaotic expansion
For the purpose of carrying out a robust optimization design of stamping,an optimiza-tion design method based on GA-BP proxy model and sparse polynomial chaos expansions(sPCE)was proposed.Firstly,according to the actual situation of the production site,the stamping pro-cess design variables and forming quality indicators were selected,and then the sample points of stamping process were obtained by Latin hypercube sampling(LHS)and CAE numerical simula-tion.On this basis,the GA-BP proxy model was constructed by combining genetic algorithm and backpropagation neural network.Afterwards,based on sPCE,the uncertainty response of stamp-ing forming quality to design variables was analyzed.Furthermore,the robust optimization model of stamping was established by coupling the GA-BP proxy model and sPCE uncertain response model.Finally,non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)was used to solve the ro-bust optimization model in the full stamping design space.Taking a reinforcing plate under pillar A as an example,the robust optimization design of stamping was carried out and then the results showed that this method could accurately obtain the feasible optimal robust process parameter combination,and could be well applied to the robust optimization design of stamping.

robust optimization designGA-BP proxy modelsparse polynomial chaos expan-sionsuncertainty analysisnon-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)

肖振泉、赵博宁

展开 >

柳州铁道职业技术学院,广西 柳州 545616

稳健优化设计 GA-BP代理模型 稀疏多项式混沌展开 不确定性分析 非支配排序遗传算法

2024

模具工业
桂林电器科学研究所

模具工业

影响因子:0.637
ISSN:1001-2168
年,卷(期):2024.50(12)