首页|基于改进遗传算法的切削加工参数优化方法

基于改进遗传算法的切削加工参数优化方法

扫码查看
针对金属切削参数优化问题,提出一种基于改进遗传算法的多目标优化方法.考虑不同加工阶段的要求,构建了基于最大材料去除率和最小表面粗糙度的目标函数,然后利用改进的非支配排序遗传算法Ⅱ(NSGA-Ⅱ)对目标函数进行求解.仿真结果表明:在粗加工中,当主轴转速为6 904.3 r/min、进给量为2 670.4 mm/min、铣削深度为4.0mm和铣削宽度为17.8mm时,得到的航空A17050合金材料的去除率最优;在精加工中,当主轴转速为7344.6 r/min、进给量为2 815.6 mm/min、铣削深度为1.0 mm和铣削宽度为4.0 mm时,获得的材料表面粗糙度结果最优.使用优化后的最佳参数组合的模拟结果与实际铣削测试结果相差较小,粗加工时实测表面粗糙度与优选值的误差仅为5.92%,精加工时实测表面粗糙度与优选值误差仅为3.12%,表明经过求解得到的最佳参数可在实际生产加工中运用,能对金属切削加工给予一定指导.
Cutting parameters optimization method based on improved genetic algorithm
Aiming at the optimization problem of metal cutting parameters,a multi-objective optimization model based on improved genetic algorithm is proposed.Considering the requirements of different processing stages,the objective function based on maximum production efficiency and minimum surface roughness was constructed,and then the improved NSGA-Ⅱ genetic algorithm was utilized to solve the objective function.The simulation results show that in rough machining,when the spindle speed is 6 904.3 r/min,the feed rate is 2 670.4 mm/min,the milling depth is 4.0mm and the milling width is 17.8 mm,the removal rate of aero A17050 alloy material is the best.In finish machining,when the spindle speed is 7 344.6r/min,the feed rate is 2 815.6 mm/min,the milling depth is 1.0mm and the milling width is 4.0mm,the obtained surface roughness is the best.The actual milling shows that the optimal parameter combination after optimization has little difference with the actual value obtained in the test.The error between the measured surface roughness and the optimal value is 5.92%in rough machining and 3.12%in fine machining.Therefore,the optimal parameters obtained by solving can be used in the actual production and processing,and give certain guidance to metal cutting.

metal cuttingparameters optimizationobjective functionconstraint conditionnon-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)

宋守斌

展开 >

杨凌职业技术学院 陕西,西安 712100

金属切削 参数优化 目标函数 约束条件 非支配排序遗传算法Ⅱ(NSGA-Ⅱ)

杨凌职业技术学院自然科学基金

ZK20-44

2024

模具技术
上海交通大学

模具技术

CSTPCD
影响因子:0.219
ISSN:1001-4934
年,卷(期):2024.(3)