首页|基于RBF-NSGA算法的注塑工艺参数优化

基于RBF-NSGA算法的注塑工艺参数优化

扫码查看
为改善注塑件缩痕和翘曲的问题,以标准回收桶的桶体为例进行工艺参数优化研究.运用Moldflow模流分析和正交试验设计构建工艺数据与质量数据对应样本.应用Isight软件对数据进行径向基神经网络(RBF)模型建立,并对模型精度进行验证.运用非支配排序遗传算法(NSGA-Ⅱ)对注塑工艺参数进行多目标优化,对算法优化后的工艺数据进行模拟验证.结果表明,算法输出的最大缩痕指数、翘曲变形量与模拟结果的误差分别为1.94%和1.27%,误差较小.且优化后的模拟最大缩痕指数为1.449%,相较于Moldflow推荐工艺降低64.8%;优化后的模拟最大翘曲变形量为7.882 mm,相较于Moldflow推荐工艺降低23.48%.生产的试验样件外观良好,尺寸满足装配要求.试验生产结果与分析结果吻合,表明该方法可指导生产.
Optimization of injection molding process parameters based on RBF-NSGA algorithm
To solve the injection molded problem of sink marks and warpage,the optimization of the injection molding process was studied by the bucket of trash as an example.The samples of process data and quality data are build by Moldflow analysis and orthogonal experimental design.The radial basis function(RBF)model for the data is build by Isight software,the accuracy of the model is verified.Injection molding process parameters are optimized by non-dominant sorting genetic algorithm Ⅱ(NSGA-Ⅱ)genetic algorithm,the process data after algorithm optimization is verified by simulation.The result shows the error between the output of the algorithm and the simulation result is very small,the maximum sink index error is 1.94%,and the warpage deformation erroris 1.27%.The optimized simulation maximum sink index is 1.449%,compared with the recommended process of Moldflow,it is reduced by 64.8%.The optimized simulation maximum warpage deformation is 7.882 mm,compared with the recommended process of Moldflow,it is reduced by 23.48%.The test sample looks good and the size meets the assembly requirements.The experimental results are in agreement with the analytical results,which shows the method can guide production.

injection molding process simulationmoldflowneural network modelgenetic algorithmmulti-objective optimization

刘冠玉、纪洪奎、宫晓然

展开 >

承德应用技术职业学院,河北 承德 067000

注塑工艺仿真 Moldflow 神经网络模型 遗传算法 多目标优化

河北省大中学生科技创新能力培育专项承德应用技术职业学院院级课题

2021H080205CDYZYZ2301

2024

模具技术
上海交通大学

模具技术

CSTPCD
影响因子:0.219
ISSN:1001-4934
年,卷(期):2024.(4)
  • 7