首页|基于机器学习的模具结构设计与制造中的材料选择与性能分析

基于机器学习的模具结构设计与制造中的材料选择与性能分析

扫码查看
通过构建基于反向传播神经网络(back propagation neural network,BPNN)的模具材料性能评估模型,优化了新型模具结构设计与制造中的材料优选过程,并提高了模具性能分析的准确性.采用了先进的神经网络算法,通过大量训练数据对模型进行训练和优化.实验过程中,详细记录了训练损失、响应速度和准确率等关键指标,以全面评估模型的性能.结果表明,所构建的BPNN模型能够快速收敛,准确率高达95%以上,且在处理不同类型的模具材料时均展现出优异的稳定性和泛化能力.该模型可为模具设计与制造中的材料选择提供科学的决策支持,显著提升模具的性能和使用寿命,同时也证明了人工智能技术在材料科学领域的应用前景.
Material selection and performance analysis based on machine learning in mold structure design and manufacturing
By constructing the evaluation model of mold material performance based on back propagation neural network(back propagation neural network,BPNN),the material selection process in the design and manufacture of new mold structure is optimized,and the accuracy of mold performance analysis is improved.To achieve this goal,we employ advanced neural network algorithms and train and optimize the model using a large amount of training data.During the experiment,key indicators such as training loss,response speed,and accuracy are recorded in detail to comprehensively evaluate the model's performance.The results show that the constructed BPNN model can quickly converge with an accuracy rate of over 95%.It exhibits excellent stability and generalization ability when dealing with different types of mold materials.This model can provide scientific decision support for material selection in mold design and manufacturing,significantly improving mold performance and service life.It also demonstrates the promising application prospects of artificial intelligence technology in the field of materials science.

mold designmaterial optimizationperformance analysisback propagation neural network(BPNN)

李娜

展开 >

西安高新科技职业学院,陕西 西安 710000

模具设计 材料优选 性能分析 反向传播神经网络(BPNN)

2024

模具技术
上海交通大学

模具技术

CSTPCD
影响因子:0.219
ISSN:1001-4934
年,卷(期):2024.(5)