首页|基于智能手机传感器数据的运动状态分类与特征预测

基于智能手机传感器数据的运动状态分类与特征预测

Classification and Feature Prediction of Motion States Based on Smartphone Sensor Data

扫码查看
随着智能手机的广泛使用,其内置的传感器为监测和分析用户的运动状态提供了丰富的数据资源.这些数据不仅能帮助用户了解自己的活动模式,还能用于估算日常运动所消耗的热量.然而,使运动健康应用准确地将这些数据分类并预测用户的运动特征,仍是一项技术挑战.探讨了基于智能手机传感器数据的运动状态分类与特征预测方面存在的问题,提出了优化智能手机传感器数据处理的建议,以增强运动状态分类的准确性,从而为开发更智能、更准确的运动健康监测应用奠定基础.
With the widespread use of smartphones,their built-in sensors provide rich data resources for monitoring and analyzing users'movement status.These data can not only help users understand their activity patterns,but also be used to estimate the amount of calories consumed during daily exercise.However,makes sports health applications accurately classify these data and predicting users'motion characteristics remains a technical challenge.It explores the problems in motion state classification and feature prediction based on smartphone sensor data,and proposes suggestions for optimizing smartphone sensor data processing to enhance the accuracy of motion state classification,laying the foundation for developing more intelligent and accurate sports health monitoring applications.

smartphonesensor datamotion state

李舒卉、苏亚亚

展开 >

运城师范高等专科学校,山西 运城 044000

智能手机 传感器数据 运动状态

2025

模具制造
深圳市生产力促进中心

模具制造

影响因子:0.182
ISSN:1671-3508
年,卷(期):2025.25(1)