首页|填埋场垃圾恶臭异味气体特征及控制研究进展

填埋场垃圾恶臭异味气体特征及控制研究进展

扫码查看
作为一个典型的点、线、面多场景集合的释放源,垃圾填埋场的恶臭异味气体具有组分杂、性质多变且难以控制等特征,而基于组分特征的精准处理是实现其有效管控的基础。梳理了填埋场中典型垃圾组分(如餐厨垃圾、污泥、废弃塑料等)在不同状态稳定化过程中异味物质的释放特征,探究了不同垃圾组分之间的相互作用关系以及对复杂的挥发性有机化合物(VOCs)释放的影响。对于填埋场的恶臭异味气体,需要针对其多组分垃圾特征、不同填埋时间、不同环境条件等开展有针对性的异味气体与作用关系研究,揭示填埋场的恶臭气味来源和形成机制。针对恶臭的变动性,可以通过人工神经网络(ANN)与电子鼻等的耦合,利用多层感知器(MLP)中的向前传播公式hl=σ(W1hl-1+bl)辅助模型处理等方法,提升不同填埋垃圾恶臭在线精确响应能力。基于实时监测和反馈,利用源头组分分类控制、过程化学靶向捕集以及末端生物处理保障等手段,实现垃圾填埋场恶臭异味气体有效控制。
Recent advances in identification of odors emitted from landfills and their potential reduction and control methods
Landfills are typical point,line,and area odor pollution sources,characterized by the complex components,variable properties,and the difficulty of control.Accurate processing based on component characteristics is crucial for achieving effective control.This paper sorts out the release characteristics of typical waste components(e.g.,kitchen waste,sludge,waste plastics,etc.)during stabilization in different states.The study explores the interaction between different waste components and the influences of complex volatile organic compounds(VOCs)release.To understand the source and formation mechanism of landfill odor,research is needed on the relationship between odor gas and the landfill's multi-component waste characteristics,different landfill time,and varying environmental conditions.To address the variability of landfill odor,the study utilizes artificial neural networks(ANN)coupled with electronic nose,employing the forward propagation formula hl=σ(W1hl-1+bl)in multilayer perceptrons(MLP)to enhance the model's ability to accurately respond to odor changes.Real-time monitoring and feedback enable effective odor control through source component classification control,process chemical targeting,and end-of-pipe biological treatment.

LandfillOdor controlPerishable wastePlastic wasteOnline monitoring

崔莹、王志杰、成兆文、王罗春、楼紫阳

展开 >

上海电力大学环境与化学工程学院,上海 200090

南华大学资源环境与安全工程学院,湖南衡阳 421001

上海交通大学环境与科学工程学院上海市固体废物处理与资源化工程研究中心,上海 200240

填埋场 恶臭异味控制 易腐垃圾 塑料垃圾 在线监测

2024

能源环境保护
煤炭科学研究总院杭州环境保护研究所

能源环境保护

影响因子:0.472
ISSN:1006-8759
年,卷(期):2024.38(6)