首页|基于信息熵重构经验模态分解神经网络的带式输送机故障诊断

基于信息熵重构经验模态分解神经网络的带式输送机故障诊断

扫码查看
提出了一种神经网络模型,用于带式输送机电机轴承的早期故障诊断.该模型采用经验模态分解与信息熵相结合的方法对信号进行重构,提取频域特征用于神经网络的训练,以实现高度精准的故障诊断.该方法能够有效应对噪声干扰,对早期故障信号具有良好的敏感性,其诊断准确率高达95.8%.
Fault Diagnosis of Belt Conveyor Based on Information Entropy Reconstruction Empirical Mode Decomposition Neural Network
Proposed a neural network model for the early fault detection of belt conveyor motor bearing.By integrating empirical mode decomposition and information entropy,the model reconstructs signals and extracts frequency domain features for neural network training to realize the very accurate fault diagnosis.This method can effectively mitigate noise interference and is highly sensitive to initial fault signals which achieves a diagnostic accuracy of 95.8%.

belt conveyorempirical mode decompositionneural networkbearing fault diagnosis

尤峰、郭刚、闫涛、吴振彬、卢海军

展开 >

中煤陕西榆林能源化工有限公司,陕西 榆林 719000

中煤信息技术(北京)有限公司,北京 100020

带式输送机 经验模态分解 神经网络 轴承故障诊断

2025

煤矿机械
哈尔滨煤矿机械 中国工程机械协会

煤矿机械

影响因子:0.387
ISSN:1003-0794
年,卷(期):2025.46(1)