首页|基于参数迁移的摇臂传动系统跨工况故障诊断算法

基于参数迁移的摇臂传动系统跨工况故障诊断算法

扫码查看
摇臂传动系统在采煤机中扮演着至关重要的角色,直接影响着煤炭生产的效率.针对跨工况迁移故障诊断难题,研究发现源域和目标域的故障数据特征分布相似.为此,提出了一种基于参数迁移的故障诊断模型.该模型采用全局均值池化的迁移卷积神经网络(TCNNG)模型,能够自动从源域工况数据中提取特征信息.通过参数迁移加微调的策略,将诊断知识参数从源域成功迁移到目标域,显著提高了模型在不同工况下的故障识别率和泛化性能.
Cross-condition Fault Diagnosis Algorithm for Rocker Arm Transmission System Based on Parameter Transfer
The rocker arm transmission system plays a crucial role in shearer,which directly affects the efficiency of coal production.Aiming at the difficult problem of cross-condition transfer fault diagnosis,research has found that the fault data feature distributions between the source domain and target domain are similar.Therefore,a fault diagnosis model based on parameter transfer was proposed.This model adopts the transfer convolutionl neural networks with global average pooling(TCNNG)model,which automatically extracts feature information from source domain condition data.By a parameter transfer and fine-tuning strategy,the diagnostic knowledge parameters are successfully transferred from the source domain to the target domain,which significantly improves the fault recognition rate and generalization performance of the model under different conditions.

shearerrocker arm transmission systemfault diagnosisdeep learningtransfer learning

邵文琦、赵梦奇

展开 >

国家能源集团乌海能源有限责任公司公乌素煤矿,内蒙古 乌海 016000

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105

采煤机 摇臂传动系统 故障诊断 深度学习 迁移学习

2025

煤矿机械
哈尔滨煤矿机械 中国工程机械协会

煤矿机械

影响因子:0.387
ISSN:1003-0794
年,卷(期):2025.46(1)