首页|基于PSO-Elman神经网络的井底风温预测模型

基于PSO-Elman神经网络的井底风温预测模型

扫码查看
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题.针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型.分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温.在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0 ℃,0.278 3,1.95%,决定系数R2为0.992 4,非常接近1,表明预测模型具有良好的预测效果.实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29 ℃,MSE为0.26,整体预测精度可满足井下实际需要.
A bottom air temperature prediction model based on PSO-Elman neural network
Currently,most underground wind temperature predictions use BP neural networks.But their prediction precision is affected by the number of learning samples and they are prone to falling into local optima.Elman neural networks have local memory capability,which improves the stability and dynamic adaptability of the network.However,there are still problems such as slow convergence speed and easy falling into local optima.In order to solve the above problems,the particle swarm optimization(PSO)algorithm is used to optimize the weights and thresholds of the Elman neural network.A bottom air temperature prediction model based on the PSO Elman neural network is established.The analysis shows that the relative humidity of the inlet and outlet wind,the surface inlet wind temperature,the surface atmospheric pressure,and the depth of the shaft are the main influencing factors of the bottom air temperature.Therefore,they are used as input data for the model,and the output data of the model is the bottom air temperature.The experimental results on the same sample dataset show that the Elman model converges at 90 iterations and the PSO Elman model converges at 41 iterations.It indicates that the PSO-Elman model converges faster.Compared with the BP neural network model,support vector regression(SVR)model,and Elman model,the prediction error of the PSO-Elman model is significantly reduced.The mean absolute error,mean square error(MSE),and mean absolute percentage error are 0.376 0 ℃,0.278 3,and 1.95%,respectively.The determination coefficient R2 is 0.992 4,which is very close to 1,indicating that the prediction model has good predictive performance.The verification results of the example show that the relative error range of the PSO-Elman model is-4.69%-1.27%,the absolute error range is-1.06-0.29 ℃,and the MSE is 0.26.The overall prediction precision can meet the actual needs of the underground.

underground heat hazard prevention and controlbottom air temperature predictionparticle swarm optimization algorithmElman neural networkPSO-Elman

程磊、李正健、史浩镕、王鑫

展开 >

河南理工大学安全科学与工程学院,河南焦作 454003

河南理工大学煤炭安全生产与清洁高效利用省部共建协同创新中心,河南焦作 454003

井下热害防治 井底风温预测 粒子群优化算法 Elman神经网络 PSO-Elman

国家自然科学基金资助项目

U1904210

2024

工矿自动化
中煤科工集团常州研究院有限公司

工矿自动化

CSTPCD北大核心
影响因子:0.867
ISSN:1671-251X
年,卷(期):2024.50(1)
  • 14