首页|基于YOLOv5-SEDC模型的煤矸分割识别方法

基于YOLOv5-SEDC模型的煤矸分割识别方法

扫码查看
现有煤矸分割识别技术参数量大、分类速度慢和识别准确度不高;YOLOv5-seg模型在上下采样操作中易造成图像表面的纹理细节和灰度特征信息丢失,降低煤矸识别效率,且在训练过程中过分侧重全局特征,而忽略了对煤矸识别至关重要的局部显著区域和特征.针对上述问题,提出了一种基于YOLOv5-SEDC模型的煤矸分割识别方法.首先接收包含煤矸形状信息的图像,并利用主干网络进行特征提取,生成特征图;其次在YOLOv5-seg模型中集成SENet模块,以保留煤与矸石表面的纹理细节和灰度特征,避免下采样带来的信息丢失;然后采用不同,膨胀率的空洞卷积策略替代传统卷积核,不仅扩大了模型的感受野,还有效减少了模型参数量;最后分割检测头对融合后的特征进行精细处理,实现对煤矸的精确分割和识别.在大柳塔煤矿实际煤矸分选现场搭建煤矸图像采集实验平台,消融实验结果表明,YOLOv5-SEDC模型的煤和矸石识别的精确率较YOLOv5-seg模型平均提高1.3%,参数量减少0.7x106个,检测速度提高了 1.4帧/s.对比实验结果表明:① YOLOv5-SEDC 模型的精确率较 YOLOv3-tiny,YOLOv5-seg,Mask-RCNN 模型分别提高了 10.7%,2.7%,1.9%,达到 95.8%.② YOLOv5-SEDC 模型的召回率较 YOLOv3-tiny,YOLOv5-seg,Mask-RCNN 模型分别提高了 3.0%,2.1%,0.9%,达到 89.1%.③ YOLOv5-SEDC 模型的平均精度均值较 YOLOv3-tiny,YOLOv5-seg,Mask-RCNN 模型分别提高了 6.4%,6.3%,1.8%,达到 95.5%.④ YOLOv5-SEDC 模型的 F1较 YOLOv3-tiny,YOLOv5-seg,Mask-RCNN 模型分别提高了 5.2%,4.2%,2.1%,达到 92.2%.⑤ YOLOv5-SEDC 模型的检测速度较 YOLOv3-tiny,YOLOv5-seg,Mask-RCNN 模型分别降低了 1.9,1.4,2.7 帧/s.可视化结果表明,YOLOv5-SEDC模型 对煤和矸石的 检测准确度较YOLOv5-seg和Mask-RCNN模型 更高,说明了 YOLOv5-SEDC模型在煤矸分割识别上具有较好性能.
Coal and gangue segmentation and recognition method based on YOLOv5-SEDC model
The existing coal and gangue segmentation and recognition technology has a large number of parameters,slow classification speed,and low recognition accuracy.The YOLOv5-seg model is prone to losing texture details and grayscale feature information on the image surface during up and down sampling operations,which reduces the efficiency of coal and gangue recognition.The YOLOv5-seg model overly focuses on global features during training,while neglecting the locally significant regions and features that are crucial for coal and gangue recognition.In order to solve the above problems,a coal and gangue segmentation and recognition method based on YOLOv5-SEDC model is proposed.Firstly,the method receives an image containing the shape information of coal and gangue,and uses the backbone network for feature extraction to generate a feature map.The method integrates the SENet module into the YOLOv5-seg model to preserve the texture details and grayscale features of coal and gangue surfaces,avoiding information loss caused by down sampling.The method adopts a dilated convolution strategy with different dilation rates instead of traditional convolution kernels.It not only expands the receptive field of the model,but also effectively reduces the number of model parameters.Finally,the segmentation detection head finely processes the fused features to achieve precise segmentation and recognition of coal and gangue.A coal and gangue image acquisition experimental platform is established at the actual coal and gangue sorting site of Daliuta Coal Mine.The ablation experiment results show that the accuracy of coal and gangue recognition of YOLOv5-SEDC model is improved by an average of 1.3%compared to YOLOv5-seg model.The parameter quantity is reduced by 0.7xl06,and the detection speed is increased by 1.4 frames/s.The comparative experimental results show the following points.① The accuracy of the YOLOv5-SEDC model is improved by 10.7%,2.7%,1.9%compared to the YOLOv3-tiny,YOLOv5-seg,and Mask-RCNN models,respectively,reaching 95.8%.② The recall rate of the YOLOv5-SEDC model has increased by 3.0%,2.1%,and 0.9%compared to the YOLOv3-tiny,YOLOv5-seg,and Mask-RCNN models,respectively,reaching 89.1%.③ The mAP of the YOLOv5-SEDC model has increased by 6.4%,6.3%,and 1.8%compared to the YOLOv3-tiny,YOLOv5-seg,and Mask-RCNN models,respectively,reaching 95.5%.④ The F1 value of the YOLOv5-SEDC model has increased by 5.2%,4.2%,2.1%compared to the YOLOv3-tiny,YOLOv5-seg,and Mask-RCNN models,respectively,reaching 92.2%.⑤ The detection speed of the YOLOv5-SEDC model is reduced by 1.9,1.4,and 2.7 frames/s compared to the YOLOv3-tiny,YOLOv5-seg,and Mask-RCNN models,respectively.The visualization results show that the YOLOv5-SEDC model has higher detection accuracy for coal and gangue than the YOLOv5-seg and Mask-RCNN models.It indicates that the YOLOv5-SEDC model has good performance in coal gangue segmentation and recognition.

coal and gangue segmentationcoal and gangue recognitioncompressed incentive networkYOLOv5-SEDCYOLOv5-segattention networkdilated convolution

杨洋、李海雄、胡淼龙、郭秀才、张会鹏

展开 >

靖远煤业工程勘察设计有限公司,甘肃白银 730913

榆林市能源局,陕西榆林 719000

浙江维思无线网络技术公司,浙江嘉兴 314001

西安科技大学电气与控制工程学院,陕西西安 710054

展开 >

煤矸分割 煤矸识别 压缩激励网络 YOLOv5-SEDC YOLOv5-seg 注意力网络 空洞卷积

陕西省秦创原"科学家+工程师"队伍建设项目陕西省教育厅服务地方专项计划项目

2022KXJ-3823JC049

2024

工矿自动化
中煤科工集团常州研究院有限公司

工矿自动化

CSTPCD北大核心
影响因子:0.867
ISSN:1671-251X
年,卷(期):2024.50(8)