首页|相变蓄热电供暖模块蓄放热性能研究

相变蓄热电供暖模块蓄放热性能研究

扫码查看
设计一种相变蓄热电供暖模块,模拟分析散热表面保温层厚度、其他表面保温层厚度、蓄热时间对模块蓄放热性能的影响.研究结果表明,基本工况(散热表面保温层厚度为5 mm,剩余表面的保温层厚度均为60 mm,蓄热时间为8 h)下,散热表面平均温度保持在30℃以上约22 h,散热表面平均热流密度在60~250 W/m2范围内可持续约23 h,模块可以长时间稳定地向室内散发热量.散热表面保温层厚度分别为3、5、7 mm时,相变阶段散热表面平均温度分别为61、54、49℃,有效散热时间分别为21、22、23 h,散热表面平均热流密度分别为218、183、158 W/m2.散热表面保温层厚度分别为3、5、7 mm时,过热阶段模块内部温升分别为15、21、26℃,模块内部、电加热管表面、其他表面温升均随散热表面保温层厚度增加而增大,散热时间也随散热表面保温层厚度增加而增长.其他表面保温层厚度为20、40、60、100、200 mm时,相变阶段散热表面平均温度分别为53、54、54、54、50 ℃,有效散热时间分别为18、21、23、23、23 h,散热表面平均热流密度分别为179、186、186、186、165 W/m2.其他表面保温层厚度不大于100 mm时,随着保温层厚度增加,模块总散热量增加,其他表面保温层厚度为200 mm时,模块总散热量相对减少.当蓄热时间为5、6、7、8 h时,模块散热表面温度最高分别为54、54、57、66℃,有效散热时间分别为13、16、19、22 h.随着蓄热时间增长,模块总散热量增大,有效散热时间延长.
Research on Heat Storage and Release Performance of Phase-change Heat Storage Electric Heating Module
A phase-change heat storage electric heating module is designed,and the influence of thick-ness of insulation layer on heat dissipation surface,thickness of insulation layer on other surfaces and heat storage time on the heat storage and release perform-ance of the module is simulated and analyzed.The re-search results show that under the basic working condi-tions(the thickness of insulation layer on heat dissipa-tion surface is 5 mm,the thickness of insulation layer on other surfaces is 60 mm,and the heat storage time is 8 h),the average temperature of heat dissipation sur-face is maintained above 30 ℃ for about 22 h,and the average heat flux density of heat dissipation surface can last for about 23 h within the range of 60 250 W/m2.The module can stably dissipate heat into the room for a long time.When the thickness of insulation layer on heat dissipation surface is 3,5 and 7 mm,the average temperature of heat dissipation surface during the phase change stage is 61,54 and 49 ℃,and the effective heat dissipation time is 21,22 and 23 h,respectively.The average heat flux density of heat dissipation surface is 218,183 and 158 W/m2,respectively.When the thickness of insulation layer on heat dissipation surface is 3,5 and 7 mm,the temperature rise inside the mod-ule during the overheating stage is 15,21 and 26 ℃,respectively.The temperature rise inside the module,on the surface of the electric heating tube,and on other surfaces increases with the increase of the thickness of insulation layer on the heat dissipation surface,and the heat dissipation time also increases with the increase of the thickness of insulation layer on the heat dissipation surface.When the thickness of insulation layers on other surfaces is 20,40,60,100 and 200 mm,the average temperature of the heat dissi-pation surface during the phase change stage is 53,54,54,54 and 50℃,and the effective heat dissipation time is 18,21,23,23 and 23 h,respectively.The aver-age heat flux density of the heat dissipation surface is 179,186,186,186 and 165 W/m2,respectively.When the thickness of other surface insulation layers is not greater than 100 mm,the total heat dissipation of the module increases with the increase of insulation layer thickness.When the thickness of insulation layers on other surfaces is 200 mm,the total heat dissipation of the module relatively decreases.When the heat storage time is 5,6,7 and 8 h,the highest temperature of heat dissipation surface of the module is 54,54,57 and 66℃,respectively,and the effective heat dissipation time is 13,16,19 and 22 h.As the heat storage time increa-ses,the total heat dissipation of the module increases,and the effective heat dissipation time extends.

phase-change heat storage electric heating moduleheat storage and release performanceinfluencing factorsnumerical simulation

姚晓丽、张甜甜、谭羽非

展开 >

哈尔滨工业大学建筑学院,黑龙江哈尔滨 150006

寒地城乡人居环境科学与技术工业和信息化部重点实验室,黑龙江哈尔滨 150006

相变蓄热电供暖模块 蓄放热性能 影响因素 数值模拟

2024

煤气与热力
中国市政工程华北设计研究院 建设部沈阳煤气热力研究设计院 北京市煤气热力工程设计院有限公司

煤气与热力

影响因子:0.559
ISSN:1000-4416
年,卷(期):2024.44(5)
  • 10