首页|基于DBSCAN算法的燃气流量数据异常检测

基于DBSCAN算法的燃气流量数据异常检测

扫码查看
燃气流量数据存在的异常流量会降低数据分析和数据预测的精度,针对个别异常流量难以检测的问题,以某门站近90 d的实际流量数据为研究对象,提出基于DBSCAN算法的燃气流量数据异常检测方法.将近90 d的燃气流量数据分割为88个日流量样本,采用DBSCAN算法对日流量样本进行异常检测,将总样本数量的5%设为异常数量阈值,检测得到异常样本(视为异常流量工况).以均方误差为评价指标寻找最相似样本(均方误差最小的正常样本),将其作为每个小时流量的异常检测的参考,以最相似样本小时流量的5%作为差距阈值,检测出个别异常流量.结果表明,基于DBSCAN算法的燃气流量数据异常检测方法,将个别异常小时流量检测纳入异常流量工况进行检测是可行的.
Anomaly Detection of Gas Flow Data Based on DBSCAN Algorithm
The abnormal flow rate in gas flow data can reduce the accuracy of data analysis and pre-diction.To address the difficulty in detecting individu-al outliers,taking the actual flow data of a gate station for nearly 90 days as the research object,the outlier de-tection method of gas flow data based on DBSCAN al-gorithm is proposed.The gas flow data of nearly 90 day is divided into 88 daily flow samples,and the DBSCAN algorithm is used to detect outliers in the daily flow samples.5%of the total number of samples is set as the abnormal number threshold,and the abnormal sam-ples are detected(regarded as abnormal flow condi-tions).The mean-square error is used as the evalua-tion index to find the most similar sample(the normal sample with the smallest mean-square error),which is used as the reference for outlier detection of hourly flow rate.Taking 5%of the hourly flow rate of the most similar samples as the difference threshold,individual outliers are detected.The results indicate that the out-lier detection method of gas flow data based on DB-SCAN algorithm is feasible,which includes individual outliers in hourly flow rate into abnormal flow condi-tions for detection

abnormal flow conditionsanomaly detectionDBSCAN algorithmclustering analysis

邢鼎皇、杨光、叶娟、赵丹铭、王海

展开 >

同济大学机械与能源工程学院,上海 200092

上海天然气管网有限公司,上海 201204

异常流量工况 异常检测 DBSCAN算法 聚类分析

2024

煤气与热力
中国市政工程华北设计研究院 建设部沈阳煤气热力研究设计院 北京市煤气热力工程设计院有限公司

煤气与热力

影响因子:0.559
ISSN:1000-4416
年,卷(期):2024.44(6)
  • 6