首页|基于机器学习的二级管网供水温度预测

基于机器学习的二级管网供水温度预测

扫码查看
以潍坊市某小区热力站为研究对象,将风向、风力、天气条件(指天空的阴晴雨雪等物理现象)、平均室外温度、平均室内温度等数据作为输入变量,构建基于机器学习的二级管网供水温度预测模型,对预测模型的预测效果进行对比.预测模型包括反向传播神经网络模型、支持向量回归模型、随机森林模型.3种预测模型均能较好预测二级管网供水温度.在3种预测模型中,随机森林模型得到的预测值与实测值吻合程度更高,预测值与实测值的误差波动范围更小.无论是否考虑天气条件,随机森林模型的各项评价指标均优于其他两种预测模型.随机森林模型的预测效果最佳.与不考虑天气条件相比,考虑天气条件的随机森林模型的预测效果有所提高.
Prediction of Water Supply Temperature in Secondary Pipe Network Based on Machine Learning
Taking a heating station in a residen-tial area in Weifang City as the research object,the da-ta such as wind direction,wind speed,weather condi-tions(referring to physical phenomena such as cloudy,sunny,rainy and snowy skies),average outdoor temper-ature,and average indoor temperature were used as in-put variables,prediction models of water supply tem-perature of secondary pipe network based on machine learning were constructed,and the prediction effects of the prediction models were compared.The prediction models include back propagation neural network(BPNN)model,support vector regression(SVR)model,and random forest model.All three prediction models can predict the water supply temperature of the secondary pipe network.Among the three prediction models,the predicted values obtained by the random forest model have a higher degree of agreement with the measured values,and the error fluctuation range be-tween the predicted value and the measured value is smaller.Regardless of weather conditions,the evalua-tion indicators of the random forest model are superior to the other two prediction models.The random forest model has the best prediction performance.Compared with not considering weather conditions,the prediction performance of the random forest model considering weather conditions is improved.

water supply temperature of second-ary pipe networkmachine learningprediction model

张志浩、崔萍、周鑫磊

展开 >

山东建筑大学 热能工程学院,山东济南 250101

二级管网供水温度 机器学习 预测模型

2024

煤气与热力
中国市政工程华北设计研究院 建设部沈阳煤气热力研究设计院 北京市煤气热力工程设计院有限公司

煤气与热力

影响因子:0.559
ISSN:1000-4416
年,卷(期):2024.44(12)