首页|深度优先的多基因表达式程序设计*

深度优先的多基因表达式程序设计*

扫码查看
基因表达式程序设计( GEP)是应用十分广泛的自动程序设计方法。就解码方法而言,它主要依据广度优先原则来实施从个体表示到表达式的转换。这代表基因片段的含义会因环境的变化而变化。为此,现有GEP对个体的评估缺乏并发支持能力。本文从理论与实验两个方面证实:深度优先原则及个体多解技术,即让单个染色体编码多个解的技术,既可解决以上GEP困境也可显著改善其性能。
Multi-Gene Expression Programming with Depth-First Decoding Principle
Gene expression programming ( GEP) is an automatic programming approach which is widely used in many areas. As far as the decoding method is concerned, it uses the breadth-first principle to transform individuals into expressions. It means that the meaning of a gene segment will change with the context. Consequently, any individual can not be concurrently evaluated in most existing GEPs. In this paper, the theoretical analysis and experiments show that the depth-first principle as well as multi-solution techniques, i. e. techniques for encoding of multiple solutions into a single chromosome, can not only solve the mentioned GEP problem, but also significantly improve its performance.

Evolutionary ComputationGenetic ProgrammingGene Expression ProgrammingMulti-Expression ProgrammingSymbolic Regression

邓薇、何锫、钱俊彦

展开 >

长沙理工大学 计算机与通信工程学院 长沙410114

北京大学 高可信软件技术教育部重点实验室 北京100871

桂林电子科技大学 广西可信软件重点实验室 桂林541004

演化计算 遗传程序设计 基因表达式程序设计 多表达式程序设计 符号回归

61170199,6106300211A004CX2012B367KX201208

2013

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCDCSCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2013.(9)
  • 9
  • 8