首页|基于三路径网络的医学图像分割方法

基于三路径网络的医学图像分割方法

扫码查看
卷积神经网络由于强大的特征提取能力在医学图像分割任务上取得一定进展,但仍需提升边缘分割的准确性.为此,文中提出基于边缘选择图推理的三路径网络,包括目标定位路径、边缘选择路径和细化路径.在目标定位路径中,设计多尺度特征融合模块,聚合高级特征,实现病变区域的定位.在边缘选择路径中,构造边缘选择图推理模块,用于低级特征的边缘筛选,并进行图推理,保证病变区域的边缘形状.在细化路径中,建立渐进式组级细化模块,逐步细化不同尺度特征的结构信息与细节信息.此外,引入融合加权Focal Tversky损失和加权交并比损失的复合损失,减轻类不平衡的影响.在公开数据集上的实验表明,文中方法性能较优.
Medical Image Segmentation Method with Triplet-Path Network
Convolutional neural networks make certain progress in medical image segmentation tasks due to their powerful feature extraction capabilities.However,the accuracy of edge segmentation still needs to be improved.To address this problem,a triplet-path network based on edge selection graph reasoning is proposed in this paper,including the target localization path,edge selection path and refinement path.In the target localization path,a multi-scale feature fusion module is designed to aggregate high-level features for the localization of lesion regions.In the edge selection path,an edge-selective graph reasoning module is constructed for edge screening of low-level features and graph reasoning to ensure the edge shape of the relevant lesion region.In the refinement path,a progressive group level refinement module is established to refine the structure information and details of different scale features.Moreover,a composite loss fusing weighted Focal Tversky loss and a weighted intersection over union loss is introduced to mitigate the effects of class imbalance.Experimental results on public datasets demonstrate the superior performance of the proposed method.

Graph Neural NetworksMedical Image SegmentationDeep LearningEdge Learning

蒋清婷、叶海良、曹飞龙

展开 >

中国计量大学理学院应用数学系 杭州 310018

图神经网络 医学图像分割 深度学习 边缘学习

国家自然科学基金国家自然科学基金

6200621562176244

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(1)
  • 37