首页|基于深度学习的视频异常检测研究综述

基于深度学习的视频异常检测研究综述

扫码查看
视频异常检测涉及概率统计、机器学习和深度学习等方法.文中旨在综合作者课题组研究成果和其它前沿科研工作,聚焦于基于深度学习的视频异常检测方法,全面探讨该领域的背景、挑战与解决方案.综合领域内的大多数相关论文,对其进行系统分析,以期为学者提供现阶段研究进展的基础认知.对基于深度学习的视频异常检测方法进行分类、分析,总结各类方法的网络模型选择,详细介绍常用数据集和性能评价指标,以性能对比突显各类方法的优势,并对视频异常检测领域的未来研究方向和应用场景进行深入探讨和展望.
Review of Deep Learning-Based Video Anomaly Detection
The study of video anomaly detection involves the methods such as probabilistic statistics,machine learning and deep learning.The purpose of this paper is to synthesize the research results of the author's group and other advanced researches with a focus on deep learning-based video anomaly detection methods,comprehensively discussing the background,challenges and solutions in this field.Most relevant papers in the field are synthesized and systematically analyzed to provide the scholars with a fundamental understanding of the current research progress.The deep learning-based video anomaly detection methods are classified and analyzed.The network model selection for different methods is summarized.The commonly used datasets and performance evaluation indexes are introduced in detail.The advantages of various methods are highlighted by the performance comparison,and the future research directions and application scenarios in the field of video anomaly detection are deeply explored and forecasted.

Video Anomaly DetectionDeep LearningPseudo AnomalyConvolutional Neural Net-workMultiple Instance Learning

吉根林、戚小莎、王嘉琦

展开 >

南京师范大学计算机与电子信息学院/人工智能学院 南京 210023

南京师范大学数学科学学院 南京 210023

南京师范大学外国语学院 南京 210023

视频异常检测 深度学习 伪异常 卷积神经网络 多示例学习

国家自然科学基金

41971343

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(2)
  • 59