首页|融合潜在结构与语义信息的多模态推荐方法

融合潜在结构与语义信息的多模态推荐方法

扫码查看
多模态推荐系统旨在利用文本、视觉等多模态信息提高推荐性能,但系统通常将多模态的语义信息融入物品表示中,或利用多模态特征挖掘潜在结构,未充分利用两者之间的关联.因此,文中提出融合潜在结构与语义信息的多模态推荐方法.基于用户历史行为和多模态特征,构建用户-用户和物品-物品图,挖掘潜在结构,构建用户-物品二部图,学习用户历史行为,并利用图卷积神经网络学习不同图的拓扑结构.为了更好地融合潜在结构和语义信息,利用对比学习,对齐学得潜在结构的物品表示与其多模态原始特征.在3个数据集上的评估实验验证文中方法的有效性.
Multimodal Recommendation Method Integrating Latent Structures and Semantic Information
Multimodal recommender systems aim to improve recommendation performance via multimodal information such as text and visual information.However,existing systems usually integrate multimodal semantic information into item representations or utilize multimodal features to search the latent structure without fully exploiting the correlation between them.Therefore,a multimodal recommendation method integrating latent structures and semantic information is proposed.Based on user's historical behavior and multimodal features,user-user and item-item graphs are constructed to search the latent structure,and user-item bipartite graphs are built to learn the user's historical behavior.The graph convolutional neural network is utilized to learn the topological structure of different graphs.To better integrate latent structures and semantic information,contrastive learning is employed to align the learned latent structure representations of item with their multimodal original features.Finally,evaluation experiments on three datasets demonstrate the effectiveness of the proposed method.

Recommender SystemMultimodal Recommender SystemContrastive LearningGraph Neural Network

张晓明、梁正光、姚昌瑀、李肇星

展开 >

安徽大学物质科学与信息技术研究院 合肥 230601

推荐系统 多模态推荐系统 对比学习 图神经网络

安徽省自然科学基金教育部中国高校产学研创新基金

2208085MF1742021ZYA06004

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(3)
  • 25