首页|基于多层次融合的弱监督目标检测网络

基于多层次融合的弱监督目标检测网络

扫码查看
由于缺少精确的边界框注释,弱监督目标检测器依赖预训练图像分类模型对候选区域进行分类.然而,预训练模型通常对具有鉴别性的区域而非完整的目标产生高响应,导致局部主导、实例丢失和非紧密框等问题.为此,文中提出基于多层次融合的弱监督目标检测网络,从增强对弱鉴别性空间特征的学习、类内样本特征丰富性和可信伪标签权重的角度提升检测性能.首先,幂池化层利用幂函数加权融合邻域内的激活值,减少弱鉴别性特征的信息损失.其次,特征混合方法随机融合候选区域的特征向量,丰富训练样本特征的多样性.最后,基于置信度的样本重加权策略融合预测值和伪标签的置信度,调节伪标签对训练的影响.在 3 个基准数据集上的实验表明文中网络性能较优.
Multi-level Fusion Based Weakly Supervised Object Detection Network
Due to the lack of precise bounding box annotations,weakly supervised object detectors rely on the pretrained image classification model to classify candidate regions.However,the pretrained model often produces high responses for discriminative regions rather than complete objects,resulting in the problems of part domination,instance missing and untight boxes.To address these issues,a multi-level fusion based weakly supervised object detection network is proposed.The detection performance is improved from the perspectives of enhancing the weak discriminative spatial feature learning,enriching intra-class sample features and weighting reliable pseudo-labels.Firstly,a power function is utilized to weight and fuse the activation values within the neighborhood by the power pooling layer to reduce information loss of weak discriminative features.Secondly,the feature vectors of candidate regions are randomly fused by the feature mixing method to enrich the diversity of training sample features.Finally,the confidence of predictions and pseudo-labels is fused via the confidence-based sample re-weighting strategy to adjust the influence of pseudo-labels on training.Experiments on three benchmarks demonstrate the superiority of the proposed network.

Object DetectionWeakly Supervised LearningMulti-level FusionDeep Network

曹环、陈曾平

展开 >

中山大学 电子与通信工程学院 深圳 518107

目标检测 弱监督学习 多层次融合 深度网络

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(5)