首页|窗口锚定的偏移受限动态蛇形卷积网络航拍小目标检测

窗口锚定的偏移受限动态蛇形卷积网络航拍小目标检测

扫码查看
为了从小目标有限特征中获取关键的有效信息,提升小目标的定位能力和检测精度,文中提出窗口锚定的偏移受限动态蛇形卷积网络航拍小目标检测方法.首先,构造偏移受限动态蛇形卷积,在不同方位动态偏移,受限蛇形卷积核自适应地关注不同大小和形状的特征区域,使特征提取聚焦于微小局部结构,促进小目标特征的捕获.然后,采用双阶段多尺度特征融合方法,对不同层阶特征图进行特征对齐、融合和注入,增强底层细节信息与高层语义信息的融合,并强化不同尺寸目标信息传输,提高小目标的检测能力.与此同时,设计窗口锚定的边界框回归损失函数,基于辅助边界框和最小点距离进行边界回归,获得准确的回归结果,提高小目标的定位能力.最后,在3个航拍数据集上的实验表明,文中方法对小目标的检测性能有不同程度的改善和提高.
Window Anchored Offset Constrained Dynamic Snake Convolutional Network for Aerial Small Target Detection
To obtain the key and effective information from limited features of small targets and improve the localization ability and detection accuracy of small targets,a window anchored offset constrained dynamic snake convolutional network for aerial small target detection is proposed.Firstly,the offset constrained dynamic snake convolution is constructed.By dynamical offsetting in different directions,the constrained snake convolution kernel adaptively focuses on feature regions of different sizes and shapes,making feature extraction concentrate on tiny local structures and thereby facilitating the capture of small target features.Secondly,by employing two-stage multi-scale feature fusion method,feature alignment fusion and injection are performed on different layer-order feature maps to enhance the fusion of the underlying detail information and the high-level semantic information,and strengthen the transmission of target information of different sizes.Thus,the detection capability of the method for small targets is improved.Meanwhile,the window anchored bounding box regression loss function is designed.The function performs the bounding regression based on the auxiliary bounding box and the minimum point distance to achieve more accurate regression results and enhance the small target localization capability of the model.Finally,comparative experiments on three aerial photography datasets show that the proposed method makes the improvements with different degrees in small target detection performance.

Small Object DetectionFeature ExtractionFeature FusionMulti-scale FeaturesBoun-ding Box Regression Loss Function

张荣国、秦震、胡静、王丽芳、刘小君

展开 >

太原科技大学计算机科学与技术学院 太原 030024

合肥工业大学机械工程学院 合肥 230009

小目标检测 特征提取 特征融合 多尺度特征 边界框回归损失函数

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(8)