首页|边界感知引导多层级特征的知识蒸馏交通场景语义分割算法

边界感知引导多层级特征的知识蒸馏交通场景语义分割算法

扫码查看
针对交通场景目标细节信息丢失与模型参数量过大等问题,提出边界感知引导多层级特征的知识蒸馏交通场景语义分割算法,以较少的参数量平滑目标分割边界.首先,构建自适应融合多层级特征模块,融合深层语义信息和浅层空间信息的多层级特征,选择性地突出目标边界信息和目标主体信息.然后,提出交互注意力融合模块,建模空间维度和通道维度的长距离依赖关系,增强不同维度间的信息交互能力.最后,提出基于候选边界的边界损失函数,构建基于细节感知的边界知识蒸馏网络,迁移复杂教师网络中的边界信息.在交通场景数据集City-scapes 和CamVid上的实验表明,文中算法能在实现轻量化的同时保持良好的分割性能,并在处理小目标和细长条目标时具有一定优势.
Traffic Scene Semantic Segmentation Algorithm with Knowledge Distillation of Multi-level Features Guided by Boundary Perception
To solve the problems of object detail information loss and large model parameters in traffic scenes,a traffic scene semantic segmentation algorithm with knowledge distillation of multi-level features guided by boundary perception is proposed.The proposed algorithm can smooth the object segmentation boundaries with fewer parameters.First,the adaptive fusing multi-level feature module is constructed to integrate the multi-level features of deep semantic information and shallow spatial information.The object boundary information and object subject information are highlighted selectively.Second,an interactive attention fusion module is proposed to model the long-range dependencies in spatial and channel dimensions,enhancing the information interaction capabilities between different dimensions.Finally,a boundary loss function based on candidate boundaries is proposed to construct a boundary knowledge distillation network based on detail awareness and transfer boundary information from complex teacher networks.Experiments on the traffic scene datasets Cityscapes and CamVid demonstrate that the proposed algorithm achieves a lightweight model while gaining positive segmentation performance,maintaining significant advantages in dealing with small and slender objects.

Semantic SegmentationDeep LearningKnowledge DistillationTraffic SceneAttention Mechanism

谢新林、段泽云、罗臣彦、谢刚

展开 >

太原科技大学电子信息工程学院 太原 030024

太原科技大学先进控制与装备智能化山西省重点实验室太原 030024

语义分割 深度学习 知识蒸馏 交通场景 注意力机制

国家自然科学基金项目山西省重点研发计划项目山西省基础研究计划面上项目太原市关键核心技术攻关"揭榜挂帅"项目

620061692022020101010052023030212211412024TYJB0137

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(9)