首页|结合深度伪造特征对比的人脸伪造检测

结合深度伪造特征对比的人脸伪造检测

扫码查看
随着AIGC(Artificial Intelligence-Generated Content)技术的不断发展,其伪造技术的多样性对现有检测方法发起巨大的挑战.现有大部分的检测方法是基于各种先进的卷积神经网络提取的人脸伪造特征进行检测,泛化能力不足以解决未知方法伪造的图像鉴伪.因此文中提出结合深度伪造特征对比的人脸伪造检测方法,对未知的伪造技术具有较好的适应能力.方法分为两个阶段:一方面挖掘不同伪造手段的相似特征,提出基于元学习的相似特征融合网络,利用元学习的学习能力获取不同伪造手法之间的相似性特征;另一方面结合具体任务下的独特伪造特征,提出具体任务下的独特性微调方法,提高模型对未知伪造方法的适应能力.在跨伪造手法和跨库测试上实验表明文中方法性能有所提升,在面对未知手段攻击时具有较优的检测能力.
Face Forgery Detection Combined with Deep Forgery Features Comparison
With the continuous development of artificial intelligence-generated content technology,the diversity of forgery techniques presents significant challenges to existing detection methods.Most current detection methods are based on facial forgery features extracted by different advanced convolutional neural networks.However,these methods are trained on datasets containing known forgery techniques,and their generalization capabilities are inadequate to handle images forged by unknown methods.Therefore,a face forgery detection method combined with deep forgery features comparison is proposed,and it exhibits excellent adaptability to unknown forgery techniques.The proposed approach consists of two stages.First,similar features of different forgery techniques are explored,and a meta-learning-based similar feature fusion network is introduced.This network leverages the learning capabilities of meta-learning to capture the similar features among different forgery methods.Second,unique forgery features specific to individual task are taken into account,and a task-specific uniqueness fine-tuning method is proposed to enhance the adaptability of the model to unknown forgery techniques.Cross-manipulation testing demonstrates that the proposed method improves the performance with superior detection capability against attacks from unknown forgery techniques.

Face Forgery DetectionDeep FakeMeta-LearningSimilar Feature FusionForgery Feature Mining

李兆威、高欣健、笪子凯、高隽

展开 >

合肥工业大学计算机与信息学院 合肥 230009

人脸伪造检测 深度伪造 元学习 相似特征融合 伪造特征挖掘

国家自然科学基金面上项目

62272141

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(9)