首页|基于内部知识扩展的软提示学习点击诱饵检测方法

基于内部知识扩展的软提示学习点击诱饵检测方法

扫码查看
点击诱饵的主要目的是通过引导用户点击链接以增加页面浏览量和广告收入.点击诱饵的内容往往具有低质量、误导性或虚假性的特征,对用户产生潜在不利影响.现有的基于预训练语言模型的提示学习方法依赖外部开放知识库以检测点击诱饵,不仅性能受制于外部知识库的质量和可用性,而且不可避免地导致查询和响应的延迟.为此,文中提出基于内部知识扩展的软提示学习点击诱饵检测方法,从训练数据集本身提取扩展词,同时采用层次聚类和优化策略,在提示学习中对获得的扩展词进行微调,避免从外部知识库检索知识.此外,采用软提示学习可获得适合特定文本类型的最佳提示,避免手工模板带来的偏差.在少样本场景下,尽管文中方法只基于内部知识进行扩展,但在三个公开的点击诱饵数据集上可以以较少的时间取得较优的检测效果.
Soft Prompt Learning with Internal Knowledge Expansion for Clickbait Detection
The main purpose of clickbait is to increase page views and advertising revenues by enticing users to click on bait links.The content of clickbait is often characterized by low-quality,misleading or false information,and this potentially engenders negative effects on users.Existing prompt learning methods based on pre-trained language models are reliant on external open knowledge bases to detect clickbait.These methods not only limit model performance due to the quality and availability of external knowledge bases,but also inevitably lead to delays in queries and responses.To address this issue,a soft prompt learning method with internal knowledge expansion for clickbait detection(SPCD_IE)is proposed in this paper.Expansion words are extracted from the training dataset,while hierarchical clustering and optimization strategies are employed to fine-tune the obtained expansion words in prompt learning,and the necessity of knowledge retrieval from external knowledge bases is avoided.Moreover,soft prompt learning is utilized to obtain the best prompts suitable for specific text types,preventing biases introduced by manual templates.Although SPCD_IE expands solely based on internal knowledge in few-shot scenarios,experimental results show it achieves better detection performance on three public clickbait datasets in less time.

Clickbait DetectionSoft PromptInternal Knowledge ExpansionPrompt Learning

董丙冰、吴信东

展开 >

合肥工业大学大数据知识工程教育部重点实验室 合肥 230009

合肥工业大学计算机与信息学院 合肥 230601

点击诱饵检测 软提示 内部知识扩展 提示学习

国家自然科学基金项目

62120106008

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(9)
  • 1