首页|基于局部对比学习与新类特征生成的小样本图像分类

基于局部对比学习与新类特征生成的小样本图像分类

扫码查看
现有的图像分类方法通常依赖于大规模的标注数据,但当数据有限时,方法在局部特征表示能力和样本数量上都存在不足.为了缓解此问题,文中提出基于局部对比学习与新类特征生成的小样本图像分类方法.首先,引入局部对比学习,将图像表示为多个局部特征并进行监督对比学习,增强模型的局部特征表示能力.然后,通过全局对比学习,确保图像整体特征的可分性.最后,在对比学习的基础上,提出特征生成方法,利用基类数据的类别原型生成新类别的样本特征,有效缓解小样本条件下的数据不足问题.在公共数据集上的实验表明,文中方法性能较优.
Few-Shot Image Classification Based on Local Contrastive Learning and Novel Class Feature Generation
The existing image classification methods depend on large-scale manually annotated data.However,when data is limited,these methods suffer from deficiencies in both local feature representation and the number of samples.To address these issues,a method for few-shot image classification based on local contrastive learning and novel class feature generation is proposed.First,local contrastive learning is introduced to represent images as multiple local features and conduct supervised contrastive learning among these local features.Thus,the model capability to represent local features is enhanced.Second,global contrastive learning is employed to ensure the separability of the overall image features.Finally,a feature generation method is proposed to mitigate the data scarcity issue under few-shot conditions.Experiments on public datasets demonstrate the superiority of the proposed method.

Image ClassificationFew-Shot Image ClassificationContrastive LearningSupervised Contrastive LearningFeature Generation

陈宁、刘凡、董晨炜、陈峙宇

展开 >

河海大学计算机与软件学院 南京 211100

图像分类 小样本图像分类 对比学习 监督对比学习 特征生成

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(10)