首页|动态融入k近邻知识的领域机器翻译方法

动态融入k近邻知识的领域机器翻译方法

扫码查看
基于k近邻检索的领域机器翻译方法通过解码器预测分布与k近邻知识的融合提升翻译性能,但检索知识的不准确性可能会对模型预测产生干扰.为此,文中提出动态融入k近邻知识的领域机器翻译方法.首先,通过评估解码器输出分布的置信度,结合门控机制,动态判断是否融合k近邻结果,灵活调整k近邻知识的融合程度.然后,引入自适应k值模块,减少错误知识干扰.同时,设计分布引导损失,引导模型输出逐步逼近目标分布,提高翻译的准确性.最后,在四个德语-英语领域机器翻译数据集上的实验表明文中方法的性能具有一定提升.
Domain Machine Translation Method with Dynamic Incorporation of k-Nearest Neighbor Knowledge
Domain machine translation methods based on k-nearest neighbour retrieval improve translation quality by incorporating translation knowledge retrieved from a translation knowledge base.Existing methods enhance translation performance by fusing the decoder prediction distribution with k-nearest neighbour knowledge.However,the inaccuracy of the retrieved k-nearest neighbor knowledge may interfere with the prediction results of the model.To address this issue,a domain machine translation method with dynamic incorporation of k-nearest neighbor knowledge is proposed.The confidence of the decoder output distribution is first assessed.With the combination of gating mechanism,the proposed method dynamically decides whether to incorporate the k-nearest-neighbor retrieval results,thereby adjusting the degree of incorporation of k-nearest neighbor knowledge flexibly.The adaptive k-value module is introduced to reduce the interference caused by incorrect k-nearest neighbor knowledge.Besides,the distribution-guided loss is designed to steer the model output approach the target distribution gradually.On four domain-specific German-English machine translation datasets,the proposed method achieves improvements.

Domain Translationk-Nearest Neighbor KnowledgeConfidenceDynamic Incorporation

黄于欣、申涛、江姝婷、曾豪、赖华

展开 >

昆明理工大学信息工程与自动化学院 昆明 650504

昆明理工大学云南省人工智能重点实验室 昆明 650504

领域翻译 k近邻知识 置信度 动态融入

2024

模式识别与人工智能
中国自动化学会,国家智能计算机研究开发中心,中国科学院合肥智能机械研究所

模式识别与人工智能

CSTPCD北大核心
影响因子:0.954
ISSN:1003-6059
年,卷(期):2024.37(11)