首页|岩石物理建模引导的低渗储层参数预测方法

岩石物理建模引导的低渗储层参数预测方法

扫码查看
[背景]准确预测储层参数对地下储层表征、气藏模式构建、产能释放及流体运移理解具有关键意义.传统基于岩心测量或数学-岩石物理建模的方法受限于弹性参数反演结果的多解性和低精度,难以满足现代勘探需求.[目的和方法]为提升低渗储层参数预测的准确性,提出了一种岩石物理建模引导的低渗储层参数预测方法.将卷积神经网络(Convolutional Neural Network,CNN)作为深度学习框架,从实际地震数据中直接预测含水饱和度、泥质含量及孔隙度;为解决标签数据稀缺问题,结合岩石物理建模与弹性参数随机扰动技术,生成高质量训练样本,有效扩充了数据集.[结果和结论]理论模型测试表明:在储层参数对岩石物理敏感性较低的情况下,也能实现低渗储层参数的空间分布预测;相比纯数据驱动的深度学习,仅需少量测井数据即可获得高精度的储层参数预测结果.在莺歌海盆地东方区的应用实践表明,该方法优化了钻井部署,助力了低渗领域的重大勘探突破和储量发现.
A petrophysical modeling-guided method for predicting parameters of low-permeability reservoirs
[Backgroud]Accurately predicting reservoir parameters is significant for characterizing subsurface reser-voirs,establishing gas accumulation patterns,releasing production capacity,and understanding fluid migration.The tra-ditional approaches based on core measurement or mathematical-petrophysical modeling are limited by the strong multi-plicity of solutions and low accuracy of elastic parameters inversion results,making it difficult to meet the demands of modern exploration.[Objective and Methods]To more effectively predict reservoir parameters,this study proposed a petrophysical modeling-guided method for predicting parameters of low-permeability reservoirs.With the convolutional neural network(CNN)as a deep learning framework,the proposed method can predict water saturation,clay content,and porosity based on actual seismic data.Additionally,considering insufficient labeled data,the petrophysical model-ing combined with the random perturbation of elastic parameters was adopted to generate high-quality training samples,thus effectively expanding the size of sample data.[Results and Conclusions]The theoretical model tests demonstrate that:(1)This method can effectively predict the spatial distributions of parameters of low-permeability reservoirs in the case of low sensitivities of reservoir parameters to petrophysics.(2)Compared to data-driven deep learning,this method can yield high-accuracy predicted results of reservoir parameters based on merely a few log data.As substantiated by ex-ploration in the Dongfang block of the Yinggehai Basin,the proposed method facilitates the optimization of well deploy-ment,guiding the achievement of significant exploration breakthroughs and reserve discovery in the low-permeability areas of the basin.

deep learningreservoir parameter predictionconstruction of labeled datalow-permeability reservoirpet-rophysical modeling

汪锐、李芳、刘仕友、孙万元、李松龄、黄晟

展开 >

中海石油(中国)有限公司海南分公司,海南 海口 570311

深度学习 储层参数预测 标签数据构建 低渗储层 岩石物理建模

中海油有限公司"十四五"重大科技项目

KJGG2022-0404

2024

煤田地质与勘探
中煤科工集团西安研究院

煤田地质与勘探

CSTPCD北大核心
影响因子:1.079
ISSN:1001-1986
年,卷(期):2024.52(8)
  • 12