首页|基于循环特征推理的大间距缺失地震数据重建方法

基于循环特征推理的大间距缺失地震数据重建方法

扫码查看
[目的]由于急流、裂谷、高山等自然环境的限制,采集的地震数据会出现大间距缺失的现象,影响后续的地震数据处理和地质分析工作,需要对缺失数据进行插值重建.[方法]为解决大间距地震数据缺失问题,提出一种基于循环特征推理的重建方法.首先缺失的地震数据经过部分卷积运算,在计算过程中根据感受野内有效特征图数据的占比,自适应地调整卷积运算结果的权重,避免在连续缺失的地震道上执行无效的卷积操作.然后采用循环特征推理的方式,逐步对缺失部分进行渐进式重建.部分卷积运算和循环特征推理交替进行,直至所有缺失数据重建完成.最后特征融合每次迭代产生的重建特征,以保证推理的准确性.为增强模型对大间距缺失区域纹理细节的学习能力,结合纹理损失和均方误差函数作为复合损失函数,进一步提高重建精度.[结果和结论]结果显示:(1)基于循环特征推理的方法可以有效重建大间距缺失的地震数据,信噪比在原缺失数据的 14.89 dB的基础上提升至 28.15 dB.(2)连续缺失 30道至 80道的多次重建实验中,本方法的重建结果信噪比、结构相似性、均方误差等评价指标均优于U-Net方法.采用 6种不同公开数据集测试了本方法的重建效果,进一步证明了本方法的有效性.(3)对比实验探究部分卷积核大小对重建结果的影响表明,当部分卷积核大小为 3×3时重建结果信噪比更高并且迭代时间更短.研究成果为大间距缺失地震数据的重建方法提供了新的解决思路.
A method for reconstructing consecutively missing seismic data based on recurrent feature reasoning
[Objective]Due to the constraints of natural environments like rapids,rifts,and high mountains,the acquired seismic data are often challenged by consecutive missing,affecting subsequent seismic data processing and geologic analysis.Hence,it is necessary to reconstruct the missing data through interpolation.[Methods]This study proposed a method for reconstructing consecutively missing seismic data based on recurrent feature reasoning.First,the missing seismic data undergo partial convolution operations,in which the weight of the convolution results is adaptively adjus-ted based on the proportion of valid feature map data in the receptive field,avoiding invalid convolution operations on consecutively missing seismic channels.Second,the missing parts are progressively reconstructed through recurrent fea-ture reasoning.Partial convolution operations and recurrent feature reasoning are alternated until all missing data are re-constructed.Finally,the reconstructed features generated in each iteration are integrated through feature fusion,ensuring accurate reasoning.To enhance the model's ability to learn the texture details of consecutively missing areas,the texture loss and mean square error(MSE)functions are combined as a hybrid loss function to further increase the reconstruction accuracy.[Results and Conclusions]Key findings are as follows:(1)The proposed method based on recurrent feature reasoning can effectively reconstruct the consecutively missing seismic data,with the signal-to-noise ratio(SNR)in-creased to 28.15 dB on top of the original 14.89 dB for the missing data.(2)In multiple reconstruction experiments fo-cusing on 30 to 80 consecutively missing seismic channels,the reconstruction results demonstrate that the proposed method outperforms the U-Net method in terms of assessment indices like SNR,structural similarity,and MSE.The ef-fectiveness of the proposed method is further verified by the reconstruction effects of the proposed method tested on six different public datasets.(3)As revealed by the impacts of the size of the partial convolution kernel on the reconstruc-tion results investigated through comparative experiments,the reconstruction results manifest a higher SNR and a short-er iteration time when the partial convolution kernel measures 3×3.The results of this study provide a novel approach for the reconstruction of consecutively missing seismic data.

seismic data reconstructionpartial convolutionrecurrent feature reasoninghybrid loss function

李紫娟、常光耀、贾永娜

展开 >

河北工业大学 人工智能与数据科学学院,天津 300401

地震数据重建 部分卷积 循环特征推理 复合损失函数

河北省自然科学基金项目国家自然科学基金项目

D202220200641804118

2024

煤田地质与勘探
中煤科工集团西安研究院

煤田地质与勘探

CSTPCD北大核心
影响因子:1.079
ISSN:1001-1986
年,卷(期):2024.52(9)
  • 4