首页|基于瓦斯含量反演的工作面瓦斯涌出量动态预测研究

基于瓦斯含量反演的工作面瓦斯涌出量动态预测研究

扫码查看
为解决煤矿采掘工作面瓦斯涌出量无法实时准确预测的问题,通过对采掘工作面瓦斯涌出来源和影响因素进行分析,阐述了工作面瓦斯含量反演的难点和处理方法,在此基础上建立了瓦斯含量反演模型,提出基于瓦斯含量反演的工作面瓦斯涌出量动态预测方法.该预测方法以瓦斯在煤体中的赋存状态是连续变化为前提,通过工作面煤体瓦斯含量反演并结合瓦斯涌出量特征系数的确定来对瓦斯涌出量进行预测.并在陕西象山煤矿进行工业试验,结果表明,该预测方法能够较好地对煤矿工作面瓦斯涌出量进行预测,瓦斯涌出量预测值与实测值的绝对误差范围在 0.09~0.20 m3/min之间,误差百分比控制在20%以内.利用该预测方法能够对采掘工作面瓦斯涌出量进行实时连续预测,保障煤矿安全高效生产.
Dynamic prediction of gas emission in working face based on gas content inversion
In order to solve the problem that gas emission from coal mining face can not be predicted accurately in real time,the difficulties and treatment methods of gas content inversion in working face were expounded by analyzing the sources and influencing factors of gas emission from mining face.On this basis,the inversion model of gas content was established,and the dynamic prediction method of gas emission from working face based on gas content inversion was put forward.The prediction method was based on the premise that the occurrence state of gas in coal is a continuous change,and the amount of gas emission was predicted through the inversion of coal gas content in working face and the determination of gas emission characteristic coefficient.The industrial test in Shaanxi Xiangshan Coal Mine shows that the prediction method can favorably predict the amount of gas emission from the coal face.The absolute error range between the predicted value and the measured value of gas emission is between 0.09~0.20 m3/min,and the error percentage is controlled within 20%.With this method,the gas emission from mining face can be continuously prediction in real-time,thus to ensure the safe and efficient production of coal mines,and provide technical support for the prevention of coal and gas outburst and gas overrun.

gas content inversiongas emissioncontent predictionprediction of gas emissionprediction method

朱墨然

展开 >

煤矿灾害防控全国重点实验室,重庆 400037

中煤科工集团重庆研究院有限公司,重庆 400037

瓦斯含量反演 瓦斯涌出量 含量预测 涌出量预测 预测方法

天地科技股份有限公司科技创新创业资金专项

2023-TD-ZD001-005

2024

煤炭工程
煤炭工业规划设计研究院

煤炭工程

CSTPCD北大核心
影响因子:0.806
ISSN:1671-0959
年,卷(期):2024.56(4)
  • 20