首页|复杂环境下煤矿井下胶带运输异物在线检测算法优化与分析

复杂环境下煤矿井下胶带运输异物在线检测算法优化与分析

扫码查看
为解决煤矿井下胶带异物检测受煤尘干扰、光线不均、胶带高速运动造成传统检测算法精度低等问题,文章基于YOLOv7 对矿井胶带异物检测算法进行优化。首先,通过自适应对比度增强算法,强化胶带监控图像对比度,提高目标图像轮廓清晰度;其次,在主干提取网络中提出多尺度混合残差注意力机制,增强YOLOv7 对异物特征提取能力与对背景干扰能力;最后,采用加权双向特征金字塔网络与4 检测头输出模型预测结果,提升网络对不同尺寸异物检测效率。通过实验可得,改进后的YOLOv7 模型对井下胶带异物识别精度和速度优于YOLOv5、YOLOv7,对井下胶带异物识别精度和识别速度分别为93。6%、26 f/s。识别平均准确率相较于YOLOv5 模型、YOLOv7 模型分别提高了 3。9%,3。1%;平均召回率分别提高了 4。1%,3。4%;检测时间分别有 0。009 s,0。005 s的提升。
Optimization of online detection algorithm for foreign matters on belt conveyor in underground coal mine
In order to solve the problems in the foreign matter detection on belt conveyor of underground coal mine caused by the low accuracy of traditional detection algorithms under the interference of coal dust,uneven light,and high-speed movement of the conveyor belt,the detection algorithm of mine belt foreign objects was optimized based on YOLOv7.Firstly,the adaptive contrast enhancement algorithm was used to strengthen the contrast of the belt monitoring image and improve the clarity of the target image contour.Secondly,a multi-scale mixed residual attention mechanism was proposed in the backbone extraction network to enhance YOLOv7's ability to extract foreign body features and interfere with background.Finally,the weighted bidirectional feature pyramid network and 4 detection heads were used to output the model prediction results to improve the efficiency of foreign object detection of different sizes.According to the experiment results,the improved YOLOv7 model was superior to YOLOv5 and YOLOv7 in the recognition accuracy and speed of foreign objects in the underground belt,and the recognition accuracy and speed of foreign objects in the underground belt were 93.6%and 26 f/s,respectively.Compared with YOLOv5 and YOLOv7,the average recognition accuracy rate of the proposed model was increased by 3.9%and 3.1%,respectively;the average recall rate was increased by 4.1%and 3.4%,respectively;the detection time was improved by 0.009 s and 0.005 s respectively.

foreign matters detectionYOLOv7attention mechanismsmall target detectionTensorRT

高敏、李玲、张辉、曹意宏、叶贵州

展开 >

长沙理工大学 电气与信息工程学院,湖南 长沙 410004

晋能控股煤业集团 马脊梁矿,山西 大同 037027

湖南大学 信息科学与工程学院,湖南 长沙 410082

太原理工大学 矿业工程学院,山西 太原 030024

展开 >

异物检测 YOLOv7 注意力机制 小目标检测 TensorRT

国家自然科学基金国家自然科学基金湖南省杰出青年科学基金湖南省重点研发计划

61971071521042602021JJ100252021GK4011

2024

煤炭工程
煤炭工业规划设计研究院

煤炭工程

CSTPCD北大核心
影响因子:0.806
ISSN:1671-0959
年,卷(期):2024.56(6)
  • 8