首页|基于YOLOv5神经网络模型的变电所压板开关状态的识别方法

基于YOLOv5神经网络模型的变电所压板开关状态的识别方法

扫码查看
煤矿变电所是大型煤矿供电系统的重要组成部分,变电所压板开关状态的精确识别是监测煤矿供电状态的重要环节.然而,随着变电所电气控制柜上压板开关数量的大幅增加,传统人工巡检存在的巡检速度慢、巡检精度低的问题愈发显著.针对上述问题,提出了一种基于YOLOv5 神经网络模型的变电所压板开关状态识别方法.使用Pytorch深度学习框架进行了模型训练;设计了针对压板开关图像的预处理方法;采用得到的最佳模型对预处理后的压板开关图像进行检测并评估检测结果.实验结果表明该方法可以实现压板开关状态的智能识别,且具有速度快、精度高的特点.
Recognition method for switch status of pressure plates in electrical substations based on YOLOv5 neural network model
Coal mine electrical substation is an important part of large coal mine power supply system,and the accurate recognition of the switch status of pressure plates in coal mine electrical substation is crucial for power supply status detection.However,with the significant increase in the number of pressure plate switches in substations,the traditional manual inspection method is facing the problems of slow inspection speed and low inspection accuracy.Aiming at the above problems,a recognition method for the switch status of pressure plates in electrical substations based on YOLO-v5 neural network model was proposed.The model was trained with the Pytorch deep learning framework.A preprocessing method was designed for the image of pressure plate switches.The preprocessed pressure plate switch images were detected and evaluated based on the obtained optimal model.The experimental results show that this method can achieve intelligent recognition of the switch status of the pressure plate,and has the performance of fast speed and high accuracy.

neural network modelidentification methodpressure plate switch statuselectrical substation

姜凌霄、高宝明、段雨松

展开 >

国网山西省电力公司超高压变电分公司,山西 太原 030006

神经网络模型 压板开关状态 识别方法 变电所

国网山西超高压变电公司2022年科技骨干项目

520510220009

2024

煤炭工程
煤炭工业规划设计研究院

煤炭工程

CSTPCD北大核心
影响因子:0.806
ISSN:1671-0959
年,卷(期):2024.56(7)
  • 18