首页|基于改进DeepLabv3+与SE注意力机制融合的非结构化道路识别方法

基于改进DeepLabv3+与SE注意力机制融合的非结构化道路识别方法

扫码查看
针对露天矿非结构化道路信息无法有效提取或提取精度不高的问题,提出一种基于改进DeepLabv3+网络融合SE注意力机制的露天矿道路识别方法,使用不同采样率的空洞卷积并行采样获取目标图像的高级特征.引入SE注意力模块对采样获取的高级特征和骨干网络提取的低级特征进行特征权衡,以区分不同特征的重要性,提高融合后特征信息的准确性.试验证明,该网络在矿山道路识别中优于其他算法,各项道路识别评价指标均得到提高,可有效识别非结构化的露天矿山道路.
An unstructured road recognition method based on the fusion of improved DeepLabv3+and SE attention mechanism
Aiming at the problems of low extraction accuracy and inability to effectively extract unstructured road information when extracting unstructured road such as open-pit mine,an open-pit road recognition method based on improved DeepLabv3+network fusion SE attention mechanism was proposed,and cavity convolution parallel sampling with different sampling rates was used to obtain advanced features of target images.SE attention module was introduced to carry out feature balance between high-level features obtained from sampling and low-level features extracted from backbone network,so as to distinguish the importance of different features and improve the accuracy of feature information after fusion.The experimental results show that the network is superior to other algorithms in mine road recognition,and all the evaluation indexes of road recognition are improved,which can effectively identify the unstructured open-pit mine road.

open-pit mineroad recognitionDeepLabv3+SE attention mechanism

金磊、杨晓伟、张浩、杜勇志、李新鹏、戴春田

展开 >

国能宝日希勒能源有限公司,内蒙古 呼伦贝尔 021000

露天矿 道路识别 DeepLabv3+ SE注意力机制

2024

煤炭工程
煤炭工业规划设计研究院

煤炭工程

CSTPCD北大核心
影响因子:0.806
ISSN:1671-0959
年,卷(期):2024.56(7)
  • 6