首页|音频数据驱动的洗煤厂溜槽堵塞检测

音频数据驱动的洗煤厂溜槽堵塞检测

扫码查看
溜槽堵塞作为工业生产中的一种常见问题,不仅影响生产效率还可能导致安全隐患,因此实时准确地检测溜槽堵塞状态具有重要意义。然而传统的检测方法在实际应用中存在诸多问题与挑战,如精度不高、依赖人工干预等。文章基于音频信息构建结合了 WaveNet 和 GRU 的WaveGNet深度网络模型,通过提取分析声音信号寻找溜槽堵塞的特征,以实现准确的堵塞检测。WaveNet能够提取高质量的声音信号特征,而GRU网络则能够捕获声音序列中的时间关系。通过将两者融合以更好地理解声音信号,在时间和频率维度上进行更准确的分析,揭示与堵塞状态相关的模式从而提高检测的准确性和鲁棒性。通过声音信息直接捕获堵塞状态,减少了人工干预的需求且具备实时性。该方法有望为工业生产中的溜槽堵塞检测提供一种创新、高效且可靠的解决方案,在实际应用中具有重大潜力。
Audio data-driven detection of chute blockages in coal preparation plants
Chute blockages,as a common issue in industrial production,not only affect production efficiency but also pose safety risks.Thus,real-time and accurate detection of chute blockage is of significant importance.However,traditional detection methods encounter various problems and challenges in practical applications,such as low accuracy and dependence on manual intervention.An innovative solution based on audio information is proposed to address these challenges.A deep neural network model called WaveGNet wis constructed,which combines WaveNet and GRU,for chute blockage detection.The model extracts and analyzes sound signals to identify characteristic patterns associated with blockages,achieving accurate detection.WaveNet excels in extracting high-quality sound features,while the GRU network captures temporal relationships within sound sequences.The fusion of these two components enhances the understanding of sound signals,enabling more accurate analysis in both the time and frequency domains.This approach reveals patterns relevant to blockage states,thereby enhancing detection accuracy and robustness.The blockage state is directly captured through sound information,reducing the need for manual intervention and ensuring real-time capability.The proposed method offers an innovative,efficient,and reliable solution for chute blockage detection in industrial production,holding great potential in practical applications.

chute detectionaudiodeep learningWaveNetGRU

谭兴富、卢军、常发军、宋阳、赵轩

展开 >

中煤科工集团北京华宇工程有限公司,河南 平顶山 467000

中国矿业大学(北京)人工智能学院,北京 100083

中国矿业大学(北京)化学与环境工程学院,北京 100083

溜槽检测 音频 深度学习 WaveNet GRU

天地科技股份有限公司科技创新创业资金专项项目

2021-2-TD-ZD001

2024

煤炭工程
煤炭工业规划设计研究院

煤炭工程

CSTPCD北大核心
影响因子:0.806
ISSN:1671-0959
年,卷(期):2024.56(10)