首页|高噪声场景下矿井通风机滚动轴承故障诊断

高噪声场景下矿井通风机滚动轴承故障诊断

扫码查看
围绕高噪声环境下矿井通风机关键部件滚动轴承故障诊断问题,提出了一种基于残差网络的端到端轴承故障诊断方法。通过引入残差学习框架增强了网络对噪声的鲁棒性,利用华北地区保德煤矿的轴承振动数据集对模型进行了系统验证,并进一步确定了影响模型性能的关键超参数,卷积核大小和批量大小的优化为模型提供了更高的诊断准确率和更强的噪声抗干扰能力。结果表明,ResNet34 模型在信噪比为 0 的噪声环境下故障诊断率接近 90%,即使在信噪比降至-10 dB时,准确率也能达到54%以上。为复杂矿井环境下的通风机滚动轴承故障诊断提供了有效解决方案,提升轴承故障诊断的准确性、及时性及可靠性,确保设备的可靠运行和生产的可持续,对保障矿山安全生产具有重要意义。
Residual network based rolling bearing fault diagnosis of mine ventilator in high noise scenario
Aiming at the difficulty in rolling bearing fault diagnosis for key components of mine ventilator in high noise environment,an end-to-end bearing fault diagnosis method based on residual network is proposed.By introducing the residual learning framework,the robustness of the network to noise is enhanced.The model is systematically verified by using the bearing vibration data set of Baode Coal Mine,and the key hyperparameters affecting the performance of the model are further determined.The optimization of convolution kernel size and batch size provides higher diagnostic accuracy and stronger noise anti-interference ability for the model.The results show that the fault diagnosis rate of the ResNet34 model is close to 90%in a noisy environment with a signal-to-noise ratio of 0,and the accuracy rate can exceed 54%even when the signal-to-noise ratio is reduced to-10 dB.It provides an effective solution for the fault diagnosis of ventilator rolling bearing in complex mine environment,improves the accuracy,timeliness and reliability of bearing fault diagnosis,ensures the reliable operation of equipment and the sustainable production,and is of great significance to ensure the safe production of mines.

mine ventilatorbearing fault diagnosishigh noiseconvolutional neural networkresidual network

郝志会、孙玉博、郑义

展开 >

国家能源集团神东煤炭保德煤矿,山西 保德 036600

煤炭科学技术研究院有限公司,北京 100013

煤科(通安)智控科技有限公司,北京 100013

矿井通风机 轴承故障诊断 高噪声 卷积神经网络 残差网络

2024

煤炭工程
煤炭工业规划设计研究院

煤炭工程

CSTPCD北大核心
影响因子:0.806
ISSN:1671-0959
年,卷(期):2024.56(12)