首页|基于联邦学习与改进IS-ResNet18的人脸识别

基于联邦学习与改进IS-ResNet18的人脸识别

扫码查看
在人脸识别场景中,边缘端的人脸数据采集与云端的数据处理之间存在着隐私泄漏风险,同时为了保证人脸识别准确高效,提出了一种基于联邦学习与改进IS-ResNet18的人脸识别方法.该方法通过联邦学习框架在不需要获取边缘端人脸数据的情况下进行模型训练,优化ResNet18模型,采用Leaky-ReLU激活函数代替ReLU激活函数以减轻神经元死亡,添加了Inception模块,优化注意力机制SE模块,增强模型对重要特征的关注程度,提高模型的表达能力和性能,缓解梯度消失和梯度爆炸的问题,增强模型的稳定性.经实验验证,该方法不仅保护了用户隐私,还保持了较高的识别准确率,具备良好的可行性和实用性.
Research on Facial Recognition Based on Federated Learning and Improved IS-ResNet18
In facial recognition scenarios,there is a risk of privacy leakage between edge based facial data col-lection and cloud based data processing.In order to ensure accurate and efficient facial recognition,a facial recogni-tion method based on federated learning and improved IS-ResNet18 was proposed.This method trained the model through a federated learning framework without the need to obtain edge face data,optimizing the ResNet18 model,replacing ReLU activation function with Leaky ReLU activation function to reduce neuronal death.In the new model,Inception module was added with optimization of attention mechanism SE module.The results showed that the model's attention to important features was enhanced,and the model's expression ability and performance were improved,alleviating gradient vanishing and exploding problems,and enhancing model stability.It is proven that this method could not only protect user privacy but also maintain high recognition accuracy,demonstrating good fea-sibility and practicality.

Federated LearningFacial RecognitionPrivacy ProtectionResNet18

黄飞、潘洪志、方群

展开 >

安徽商贸职业技术学院信息与人工智能学院,安徽芜湖 241002

安徽师范大学计算机与信息学院,安徽芜湖 241002

联邦学习 人脸识别 隐私保护 ResNet18

2025

绵阳师范学院学报
绵阳师范学院

绵阳师范学院学报

影响因子:0.17
ISSN:1672-612X
年,卷(期):2025.44(2)