首页|噪声情形下块稀疏信号恢复的充分条件

噪声情形下块稀疏信号恢复的充分条件

扫码查看
压缩感知是一种有效的信号采集技术,利用信号的可压缩性,通过采样与非线性算法完美地恢复信号.基于压缩感知理论,本文通过块正交匹配追踪算法,研究在l∞有界噪声影响下恢复块稀疏信号和强衰减块稀疏信号的约束等距性质,给出保证该算法准确恢复原信号的充分条件,并通过数值实验对影响稀疏信号性能的因素进行分析比较.
Sufficient conditions for recovering block sparse noisy signals
Compressed sensing uses the compressibility of signals to entirely recover signals by sampling techniques and nonlinear algorithms,hence regarded as an effective signal acquisition technology.Based on the theory of compressed sensing,taking the l∞ bounded noise as the example,we study the RIP properties in recovering block sparse signals and the strongly-decaying block sparse signals by the BOMP algorithm,and we provide necessary sufficient conditions to ensure recovering the signals.Finally,we analyze and compare the factors which affect the performance of sparse signals by means of numerical experiments

BOMP algorithml∞ bounded noiseblock sparse signalstrongly-decaying block sparse signal

单浠、王金平

展开 >

宁波大学 数学与统计学院,浙江 宁波 315211

BOMP算法 l∞有界噪声 稀疏信号 强衰减块稀疏信号

国家自然科学基金

62071262

2024

宁波大学学报(理工版)
宁波大学

宁波大学学报(理工版)

CSTPCD
影响因子:0.354
ISSN:1001-5132
年,卷(期):2024.37(3)
  • 1