首页|结构可靠性拓扑优化的深度学习协同方法

结构可靠性拓扑优化的深度学习协同方法

扫码查看
在给定约束条件下,结构拓扑优化以最优化性能获得设计域内材料的最佳布局.传统拓扑优化面临两大挑战:其一,未定量计入参数不确定性的影响,导致优化后结构在服役中常常不满足性能约束;其二,基于有限元模型的拓扑优化分辨率严重依赖于有限元网格.本文以随机参数定量计及固有不确定性,基于顺序优化与可靠性分析实现可靠性优化模型的确定性转化.进一步,基于网络训练与拓扑优化的过程相似性,以深度神经网络表达单元相对密度与网络参数之间的映射,通过构造计及可靠性的损失函数,将拓扑优化过程转换为网络训练过程.算例验证了所提方法获得的拓扑优化结构能够在满足性能可靠性要求的前提下实现较高的拓扑分辨率.
Reliability-based topology optimization collaborated with deep learning
Structural topology optimization obtains the best layout of materials in the design domain with optimal performance under given constraints.Two challenges faced by the traditional topology optimization include:(1)the effects of parameter uncertainties are not quantitatively accounted for,resulting in optimized structures that often do not satisfy performance constraints in service;(2)the resolution of topology optimization based on finite element models is heavily dependent on the finite element mesh.In this paper,the deterministic transformation of reliability-based topology optimization(RBTO)model is realized based on sequential optimization and reliability assessment method by quantitatively accounting for the inherent uncertainty with stochastic parameters.Further,based on the process similarity between the neural network training and the topology optimization,the network parameters(including weights and bias)are mapped to the relative density of all elements by a deep neural network.As a result,the topology optimization process is converted into a network training process by constructing a loss function that accounts for reliability.Finally,it is demonstrated that the proposed method can achieve higher resolution of the optimized structure while meeting the reliability requirement.

topology optimizationreliability-based optimizationdeep neural networkfinite element analysis

阮相当、许孟辉、李萍、蒋章宇、贺元强、刘天旭、陶磊

展开 >

宁波大学 机械工程与力学学院,浙江 宁波 315211

新疆理工学院 理学院,新疆 阿克苏 843100

拓扑优化 可靠性优化 深度神经网络 有限元分析

宁波大学省属高校基本业务费项目新疆维吾尔自治区天山青年计划新疆维吾尔自治区自然科学基金

SJLY20220032020Q0832021D01B46

2024

宁波大学学报(理工版)
宁波大学

宁波大学学报(理工版)

CSTPCD
影响因子:0.354
ISSN:1001-5132
年,卷(期):2024.37(4)
  • 22