首页|一个圆环上全纯映射的Nevanlinna理论第二基本定理

一个圆环上全纯映射的Nevanlinna理论第二基本定理

扫码查看
为了建立圆环上的全纯映射和处于强λ-次一般位置的超曲面交的第二基本定理,采用了Nochka权方法.首先用Nochka权将关于所有超曲面的Weil函数用部分超曲面的Weil函数控制;然后将超曲面嵌入到高维射影空间中变成超平面,并构造线性非退化全纯映射;进而利用圆环上关于超平面推广的 Cartan 第二基本定理,给出圆环上代数非退化全纯映射和超曲面处于强λ-次一般位置的第二基本定理.
A second main theorem of Nevanlinna theory for holomorphic mappings on annuli
To establish a second main theorem for holomorphic mappings on annuli intersecting hypersurfaces in strong λ-subgeneral position,the Nochka weight is employed.First,the sum of Weil functions of all hypersurfaces are controlled by the sum of partial hypersurfaces with Nochka weights.Then,the hypersurfaces are embedded into a high-dimensional projective space to be hyperplanes,and a linearly non-degenerate holomorphic mapping is constructed.Finally,a second main theorem is established for algebraically non-degenerate holomorphic mappings on the annuli intersecting hypersurfaces in strong λ-subgeneral position by the generalized form of Cartan's second main theorem.

Nevanlinna theorystrong λ-subgeneral positionsecond main theoremNochka weight

高玉辉、于光升

展开 >

宁波大学 数学与统计学院,浙江 宁波 315211

Nevanlinna理论 强λ-次一般位置 第二基本定理 Nochka权

2024

宁波大学学报(理工版)
宁波大学

宁波大学学报(理工版)

CSTPCD
影响因子:0.354
ISSN:1001-5132
年,卷(期):2024.37(5)